• Title/Summary/Keyword: fluid output

Search Result 340, Processing Time 0.03 seconds

Flow-Turbine Interaction CFD Analysis for Performance Evaluation of Vertical Axis Tidal Current Turbines (I) (수직축 조류 터빈 발전효율 평가를 위한 유동-터빈 연동 CFD 해석 (I))

  • Yi, Jin-Hak;Oh, Sang-Ho;Park, Jin-Soon;Lee, Kwang-Soo;Lee, Sang-Yeol
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.3
    • /
    • pp.67-72
    • /
    • 2013
  • In this study, numerical analyses that considered the dynamic interaction effects between the flow and a turbine were carried out to investigate the power output performance of an H-type Darrieus turbine rotor, which is one of the representative lifting-type vertical-axis tidal-current turbines. For this purpose, a commercial CFD code, Star-CCM+, was utilized for an example three-bladed turbine with a rotor diameter of 3.5 m, a solidity of 0.13, and the blade shape of an NACA0020 airfoil, and the optimal tip speed ratio (TSR) and corresponding maximum power coefficient were evaluated through exhaustive simulations with different sets of flow speed and external torque conditions. The optimal TSR and maximum power coefficient were found to be approximately 1.84 and 48%, respectively. The torque and angular velocity pulsations were also investigated, and it was found that the pulsation ratios for the torque and angular velocity were gradually increased and decreased with an increase in TSR, respectively.

Blood Pressure Simulator using An Optimal Controller with Disturbance Observer

  • Kim, Cheol-Han;Han, Gi-Bong;Lee, Hyun-Chul;Kim, Yun-Jin;Nam, Ki-Gon;SaGong, Geon;Lee, Young-Jin;Lee, Kwon-Soon;Jeon, Gye-Rok;Ye, Soo-Young
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.6
    • /
    • pp.643-651
    • /
    • 2007
  • The various blood pressure simulators have been proposed to evaluate and improve the performance of the automatic sphygmomanometer. These have some problems such as the deviation of the actual blood pressure waveform, limitation in the blood pressure condition of the simulator, or difficulty in displaying the blood flow. An improved simulator using disturbance observer is proposed to supplement the current problems of the blood pressure simulator. The proposed simulator has an artificial arm model capable of feeding appropriate fluids that can generate the blood pressure waveform to evaluate the automatic sphygmomanometer. A controller was designed and thereafter, simulation was performed to control the output signal with respect to the reference input in the fluid dynamic model using the proposed proportional control valve. To minimize the external fluctuation of pressure applied to the artificial arm, a disturbance observer was designed on the plant. A hybrid controller combined with a proportional controller and feed-forward controller was fabricated after applying a disturbance observer to the control plant. Comparison of the simulations between the conventional proportional controller and the proposed hybrid controller indicated that even though the former showed good control performance without disturbance, it was affected by the disturbance signal induced by the cuff. The latter exhibited an excellent performance under both situations.

Performance Evaluation of a Bidirectional Piezoelectric Hybrid Actuator (양방향 압전-유압 하이브리드 구동장치의 성능 시험)

  • Jin, Xiaolong;Ha, Ngocsan;Goo, Namseo;Bae, Byungwoon;Kim, Taeheun;Ko, Hanseo;Lee, Changseop
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.213-219
    • /
    • 2015
  • Piezoelectric-based hydraulic actuator is a hybrid device consisting of a hydraulic pump driven by piezoelectric stacks that is coupled to a conventional hydraulic cylinder via a set of fast-acting valves. Nowadays, such hybrid actuators are being researched and developed actively in many developed countries by requirement of high performance and compact flight system. In this research, a piezoelectric hybrid actuator has been designed and tested. To achieve bi-directional capabilities in the actuator, solenoid valves were used to control the direction of output fluid. The experimental testing of the actuator in uni-directional and bi-directional modes was performed to examine performance issues related to the solenoid valves. The results showed that the bi-directional performance was slightly lower than uni-directional performance due to air bubble developed in the valve system. A new design to solve the vacuum problem has been proposed to improve the performance of the hybrid actuator.

Development of a Simulation Model for an 80 kW-class Electric All-Wheel-Drive (AWD) Tractor using Agricultural Workload (농작업 부하 데이터를 활용한 80 kW급 전기구동 AWD 트랙터의 시뮬레이션 모델 개발)

  • Baek, Seung Yun;Kim, Wan Soo;Kim, Yeon Soo;Kim, Yong Joo;Park, Cheol Gyu;An, Su Cheol;Moon, Hee Chang;Kim, Bong Sang
    • Journal of Drive and Control
    • /
    • v.17 no.1
    • /
    • pp.27-36
    • /
    • 2020
  • The aim of this study is to design a simulation model for an electric All-Wheel-Drive (AWD) tractor to evaluate the performance of the selected component and agricultural work ability. The electric AWD tractor consists of four motors independently for each drive wheel, and each motor is combined with an engine generator, a battery pack, and reducers. The torque data of a 78 kW-class tractor was measured during plow tillage and driving operation to develop a workload cycle. A simulation model was developed by using commercial software, Simulation X, and it used the workload as the simulation condition. As a result of simulation analysis, the drive system, including an electric motor and reducers, was able to cope with high load during plow tillage. The SOC (State of Charge) level was influenced by the output power of the motor, and it was maintained in the range of 50~80%. The fuel consumed by the engine was about 18.23 L during working on a total of 8 fields. The electric AWD tractor was able to perform agricultural work for about 7 hours. In the future study, the electric AWD tractor will be developed reflecting the simulation condition. Research on the comparison between the simulation model and the electric AWD tractor should be performed.

Next Generation Dairy Processing Science and Technology: Functional and Rational in Dairy Industry

  • Charchoghlyan, Haykuhi
    • Journal of Dairy Science and Biotechnology
    • /
    • v.33 no.3
    • /
    • pp.167-170
    • /
    • 2015
  • The dairy industry, as part of the broader agricultural sector, is classified as a basic industry to the Korea economy. Basic industries provide income to a region by producing an output, purchasing production inputs, services and labor. An integrated, multidisciplinary approach for the next generation of dairy products with added health benefits represent the direct economic contribution. The commercialization of "nutritional" functional foods can only be successful if the consumer is confident in the scientific validity of the claims. Modern biotechnologies such as genomics, genetic expression and biomarkers of health performance suggested to whole dairy products, such as fluid milk, butter, cheese, ice cream and frozen dessert products (German, 1999). The following definition makes the point that dairy products can provide a nutritional value beyond the basic nutritional requirements: 1) The dairy industry has the opportunity to improve the health and well-being of its customers and/or to reduce their risk of disease through dairy products with added activities. 2) Functional dairy products are those that can be demonstrated to benefit target functions in the body in a way that improves the state of health and /or reduces the risk of disease. They are food products that are consumed as part of a normal diet rather than pills or supplements. 3) Dairy products based on functionality will need to link the scientific basis of such functionality to the communication of its benefit to the general public. 4) Both the efficacy and the safety of the food components with health benefits will require evidence based on the measurement of scientific biomarkers relevant to their biological responses and health end points. 5) Sound evidence from human studies based on intermediate health end points using accepted biomarkers will provide the basis for promotional messages divided into two categories-enhanced function and reduced risk of disease. 6) Success in solving key scientific and technological challenges will only be achieved by interdisciplinary research programs to exploit the scientific concepts in functional dairy science.

  • PDF

A New Flow Control Technique for Handling Infinitesimal Flows Inside a Lab-On-a-Chip (랩온어칩 내부 미세유동제어를 위한 새로운 유동제어기법)

  • Han, Su-Dong;Kim, Guk-Bae;Lee, Sang-Joon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.2 s.245
    • /
    • pp.110-116
    • /
    • 2006
  • A syringe pump or a device using high electric voltage has been used for controlling flows inside a LOC (lab-on-a-chip). Compared to LOC, however, these microfluidic devices are large and heavy that they are burdensome for a portable ${\mu}-TAS$ (micro total analysis system). In this study, a new flow control technique employing pressure regulators and pressure chambers was developed. This technique utilizes compressed air to control the micro-scale flow inside a LOC, instead of a mechanical actuator or an electric power supply. The pressure regulator controls the output air pressure by adjusting the variable resistor attached. We checked the feasibility of this system by measuring the flow rate inside a capillary tube of $100{\mu}m$ diameter in the Re numbers ranged from 0.5 to 50. In addition, the performance of this flow control system was compared with that of a conventional syringe pump. The developed flow control system was found to show superior performance, compared with the syringe pump. It maintains automatically the: air pressure inside a pressure chamber whether the flow inside the capillary tube is on or off. Since the flow rate is nearly proportional to the resistance, we can control flow in multiple microchannels precisely. However, the syringe pump shows large variation of flow rate when the fluid flow is blocked in the microchannel.

Antidromic Electrically Compound Action Potential in Cochlear Implantees (인공와우 이식자의 역행성 청신경 복합활동전위)

  • Heo, Seung-Deok;Jung, Sung-Wook;Jung, Seung-Hyun
    • Phonetics and Speech Sciences
    • /
    • v.1 no.4
    • /
    • pp.203-207
    • /
    • 2009
  • Electrically evoked compound action potentials (ECAP) have originated from the distal end of the auditory nerve. ECAP are characterized as the difference between the clearly large trough (N) and the following positive peak (P). N-wave occurs around $200-400\;{\mu}s$ after stimulus onset and P-wave at around $400-800\;{\mu}s$. Contrary to expectations, positive peaked ECAP (pp-ECAP) was dominated by a relatively large-amplitude positive following negative peak. pp-ECAP can be recorded from the sites on or near the surgically exposed nerve trunk in animal models and/or in cases of monophasic stimulation. This study will provide the causes of the appearance of pp-ECAP in cases of cochlear implant recipients using imaging studies and medical records and statistically analysis between N-P and P-N on the amplitude input-output function (amp-I/O) for the prediction of the possibilities of clinical tools. Thirteen children participated in the study and received a Cochlear CI-24RE (CA). ECAP was recorded using auto-NRT (Cochlear Ltd., Australia) at four to five weeks post surgery. pp-ECAP was measured from 36 electrodes and typical ECAP from 220 electrodes. There was no abnormality in the imaging study and operation finding in patients with typical ECAP. pp-ECAP was found at the inner ear anormaly and ossification in imaging study and gel-state inner ear fluid was observed in the operation finding. The amplitude of pp-ECAP increased depending on current intensities, but amp-I/O increase more gradually than in the case of typical ECAP (p=0.003). pp-ECAP is antidromic potential which can record from the inner ear anormaly and ossified cochlear. Amp-I/O also depends on current intensity as well typical ECAP. These results provide a useful tool for audiological evaluation for the spiral ganglion cell status to the value of pp-ECAP.

  • PDF

The Role of Reactive Oxygen Free Radical in the Pathogenetic Mechanism of Endotoxin-Induced Acute Lung Injury in Domestic Pigs (내독소에 의한 돼지의 급성 폐손상에서 산소기의 역할에 관한 연구)

  • Kim, Young-Whan;Yoo, Chul-Gyu;Jeong, Ki-Ho;Choi, Hyung-Seok;Lee, Hyuk-Pyo;Han, Sung-Koo;Shim, Young-Soo;Kim, Keun-Youl;Han, Yong-Chol
    • Tuberculosis and Respiratory Diseases
    • /
    • v.38 no.4
    • /
    • pp.357-371
    • /
    • 1991
  • To identify the pathogenetic role of reactive oxygen free radical-induced oxidation reaction in endotoxin-induced acute lung injury, we infused endotoxin into 8 domestic pigs; endotoxin only (n=3), pretreatment with dimethylthiourea (DMTU) (n=5). We observed the sequential changes in hemodynamic parameters, the concentration of plasma oxidized glutathione (GSSG) in pulmonary arterial and venous blood, and albumin content in bronchoalveolar lavage fluid (BALF). The results were as follows. 1) While cardiac output decreased, mean pulmonary arterial pressure, pulmonary vascular resistance, and alveolar-arterial oxygen difference increased over phase 1 (0-2 hr) and phase 2 (2-4.5 hr) by endotoxin, DMTU attenuated the above changes only during phase 2. 2) While the concentration of plasma GSSG increased significantly by endotoxin during phase 2, there were no significant differences between pulmonary arterial and venous GSSG contents during both phases. The increase in plasma GSSG content was attenuated by DMTU. 3) The content of BALF albumin was significantly lower in DMTU group than that of endotoxin group. These results suggest that reactive oxygen free radical-induced oxidation reaction may have an important pathogenetic role in endotoxin-induced acute lung injury in pigs, which seems to be greater during phase 2 rather than phase 1.

  • PDF

Influence of Performance and Internal Flow of a Radial Inflow Turbine with Variation of Vane Nozzle Exit Angles (베인노즐 출구각도에 따른 100kW급 구심터빈의 성능 및 내부유동의 영향)

  • Mo, Jang-Oh;Kim, You-Taek;Oh, Cheol;Lee, Young-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.6
    • /
    • pp.757-764
    • /
    • 2011
  • In this study, we analysed the influence of the performance and inflow flow of a radial inflow turbine with the variation of vane nozzle exit angles for a 100kW class turbine applicable in the waste heat recovery system. For this, three-dimensional CFD analysis was performed using commercial code called ANSYS Fluent 12.1. As the vane nozzle exit angle was more increased the reattachment region near blades of the vane nozzle got smaller, and also the Mach number at vane nozzle exit was observed to be 1 due to the effect of the cross section reduction. Through this study, we expect that the analysed results will be used as the design material for the composition of the turbine optimal design parameters corresponding to the target output power.

Effects of Protein Kinase C Modulation on Hepatic Hemodynamics and Glucoregulation

  • Lee, Joong-Woo;Kong, In-Deok;Park, Kyu-Sang;Chung, Hae-Sook;Filkins, James P.
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.3 no.6
    • /
    • pp.571-578
    • /
    • 1999
  • This study evaluated the effects of PKC activation using phorbol 12-myristate 13-acetate (PMA) and PKC inhibition using the isoquinoline sulfomide derivative H-7 on hemodynamics and glucoregulation in the isolated perfused rat liver. Livers were isolated from fed male Holtzman rats and perfused with Krebs Ringer bicarbonate solution under a constant flow of 50 ml/min at $35^{\circ}C.$ Portal vein pressure, glucose and lactate concentrations in the medium and oxygen consumption rates were continuously monitored by a Grass polygraph, YSI glucose and lactate monitors, and a YSI oxygen monitor, respectively. PMA at concentration of 2 to 200 nM increased the portal vein pressure, glucose and lactate production, but decreased oxygen consumption rate in a dose-dependent fashion. H-7 $(200\;{\mu}M)$ attenuated PMA (50 nM)-induced vasoconstriction $(15.1{\pm}1.36\;vs\;10.56{\pm}1.17\;mmHg),$ glucose production rate $(91.3{\pm}6.15\;vs\;71.8{\pm}2.50\;{\mu}moles/g/hr),$ lactate production rate $(72.4{\pm}6.82\;vs\;53.6{\pm}4.82\;{\mu}moles/g/hr)$ and oxygen consumption rate $(33.7{\pm}1.41\;vs\;27.9{\pm}1.75\;{\mu}l/g/min).$ The effects of PMA were blocked either by addition of verapamil $(9\;{\mu}M)$ or perfusion with $Ca^{2+}-free$ KRB. These results suggest that the hemodynamic and glucoregulatory changes in the perfused rat liver are mediated by protein kinase C activation and require $Ca^{2+}$ influx from the extracellular fluid.

  • PDF