• Title/Summary/Keyword: fluid flow velocity

Search Result 1,740, Processing Time 0.036 seconds

A Numerical Study on the Flow Characteristics of Temperature Control Valve by Pressure Compensation (압력 평형식 온도조절 밸브 내부 유동 특성에 대한 수치적 연구)

  • Hwang, J.H.;Kim, T.A.;Kim, Youn-J.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.448-453
    • /
    • 2005
  • Temperature Control Valve (TCV) is one of the useful temperature control devices, which is used to control constant temperature of working fluid in power and chemical plants and domestic water supply systems. TCV is composed of body, cylinder and piston, and the body shape has a symmetrical H-type. In general, it has several inlet and outlet holes, and its shape is like as tubular sleeve. The piston has three rings two rings of the end of piston have the function of controlling inlet flow rate with hot and cold working fluids, the center ring has the function of preventing hot and cold water from intermixing. Consequently, the shapes of piston and cylinder are the main design parameters in the performance of TCV. In this study, numerical analyses were carried out with two different piston and cylinder shapes to investigate the functions as a temperature control valve and the flow characteristics according to piston opening grade in TCV. Using a commercial code, FLUENT, velocity and pressure fields in TCV are obtained under steady, standard $k -{\epsilon}$ turbulence model and no-slip condition.

  • PDF

Open Boundary Treatment of Nonlinear Waves in the Shallow Water Region by Boundary Element Method (경계요소법에 의한 파동장에 있어서 비선형파의 가상경계처리)

  • ;Kiyoshi Takikawa
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.3 no.3
    • /
    • pp.176-183
    • /
    • 1991
  • In this paper. boundary element method is applied to the analysis of nonlinear free surface wave. A particular concern is given to the treatment of the open boundaries at the in-flow boundary and out-flow boundary, which uses the mass-flux and energy-flux considering the continuity of fluid. By assuming the fluid to be inviscid and incompressible and the flow to be irrotational. the problem is formulated mathematically as a two-dimentional nonlinear problem in terms of a velocity potential. The equation(Laplace equation) and the boundary conditions are transformed into two boundary integral equations. Due to the nonlinearity of the problem. the incremental method is used for the numerical analysis. Numerical results obtained by the present boundary element method are compared with those obtained by the finite element method and also with experimental values.

  • PDF

A Study on the Performance of Centrifugal Blowers by Blades Characteristics (원심형 송풍기의 날개 특성에 따른 성능에 관한 연구)

  • Kim, J.W.;Ahn, E.Y.
    • The KSFM Journal of Fluid Machinery
    • /
    • v.7 no.5 s.26
    • /
    • pp.13-19
    • /
    • 2004
  • Centrifugal blowers are widely used for air handling units in industry applications. The blower has a centrifugal impeller and a scroll casing including a driving component such as an electric motor. The impeller takes forward or backward blades to induce flows into the blower, Comprehensive investigation according to the two kinds of blades is systematically carried out for a guidance of design for this kind research. It is observed that flow rate of the blower with forward blades is larger than that of the system with backward blades. Otherwise, the system noise is more pronounced in the case of the blower with forward blades. The reason is due to larger velocity from the rotating forward blades that pose obtuse angle with the circumferential direction. The distinguished characteristics are validated by a parallel experiments with a wind tunnel and in an anechoic chamber. Numerical analysis for the system shows detail information inside the blades and the casing. A series of figures to show the flow details offer deep understanding of the performance of a centrifugal blower with different blades.

Analysis of Flow Characteristics of Forced Ventilated Pre-drying Facility for Mandarin (강제 통풍식 감귤 예건시설의 유동 해석)

  • Kwon, Jin-Kyung;Yun, Hong-Sun;Jeong, Hoon;Lee, Hyun-Dong;Lee, Sung-Hyoun;Moon, Jong-Pil
    • Journal of Biosystems Engineering
    • /
    • v.35 no.6
    • /
    • pp.393-400
    • /
    • 2010
  • Uniform and rapid pre-drying of mandarin is important to improve the storage quality. The aim of this study was to suggest the basic design of forced ventilated pre-drying facility for mandarin by thermal flow analysis using computational fluid dynamics software (FLUENT 6.2). Developed CFD simulation model was verified by comparison with experimental data. Airflows and temperature distributions in the five conceptional designs including existing ordinary temperature storage rooms were analyzed and appropriate basic design was determined. Analysis of the effect of arrangement of windows and exhaust fans on thermal flow in facility was carried out for more detailed design. The results of this investigation showed that the predicted airflow velocity by CFD simulation showed a good agreement with the measured value and optimum design condition for simulated forced ventilated pre-drying facility of mandarin has two exhaust fans and two windows on both sidewalls and cover on loaded mandarin.

Numerical Modeling of Heat Transfer for Squeeze Casting of MMCs (용탕주조법을 이용한 금속복합재료 제조공정의 열전달 해석)

  • Jung, Chang-Kyu;Jung, Sung-Wook;Nam, Hyun-Wook;Han, Kyung-Seop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.10
    • /
    • pp.2104-2113
    • /
    • 2002
  • A finite element model is developed for the process of squeeze casting of metal matrix composites (MMCs) in cylindrical molds. The fluid flow and the heat transit. are fundamental phenomena in squeeze casting. To describe heat transfer in the solidification of molten aluminum, the energy equation is written in terms of temperature and enthalpy are applied in an axisymmetric model which is similar to the experimental system. A one dimensional flow model simulates the transient metal flow. A direct iteration technique was used to solve the resulting nonlinear algebraic equations, using a computer program to calculate the enthalpy, temperature and fluid velocity. The cooling curves and temperature distribution during infiltration and solidification were calculated fer pure aluminum. Experimentally, the temperature was measured and recorded using thermocouple wire. The measured time-temperature data were compared with the calculated cooling curves. The resulting agreement shows that the finite element model can accurately estimate the solidification time and predict the cooling process.

Analysis of Tidal Stream around Ship Impact Protection of Incheon Bridge Using CFD (CFD를 사용한 인천대교 충돌방지공 주변의 조류 흐름장 해석)

  • Kim, Gunwoo;Oh, Sang Ho;Yi, Jin-Hak;Kwon, Ohjung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.169.2-169.2
    • /
    • 2010
  • Recently, the massive offshore bridges in a ship passage have been constructed on the sea. Therefore, the ship impact protection for the bridge-piers are installed to consider the possibility of vessel collision danger. Due to the ship impact protection, the flow-field characteristics are changed in comparison with the condition without the ship impact protection. Especially, the fluid velocity between the pier and the ship impact protection is possible to increase due to the contraction of the cross sectional area of flow. In this study, the tidal energy magnitude around the ship impact protection of Incheon bridge is assessed by simulating the flow-field by using FLOW-3D software.

  • PDF

Viscous Flow Analysis for the Rudder Section Using FLUENT Code (FLUENT 코드를 이용한 타 단면의 점성 유동 해석)

  • 부경태;한재문;송인행;신수철
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.40 no.4
    • /
    • pp.30-36
    • /
    • 2003
  • Lately, the cavitation and erosion phenomena in the rudder have been increased for high-speed container ships. However, cavitation is not prone to occur in model experiments because of low Reynolds number. In order to predict the cavitation phenomena, the - analysis of the viscous flow in the rudder gap is positively necessary In this study, numerical calculation was applied to the two-dimensional flow around the rudder gap using FLUENT code. The velocity and pressure field were numerically acquired and cavitation phenomena could be predicted. And the case that the round bar was installed in the rudder gap was analyzed. For reducing the acceleration force when fluid flow through the gap, modified rudder shape is proposed, It is shown that modified rudder shape restrain the pressure drop at the entrance of the gap highly both in the computational results and in the model experiment, and reduce the cavitation bubbles.

Analysis of Flow on Grooving Corrosion at the Weld of a Carbon Steel pipe made by Electrical Resistance Welding (전기저항 용접강관의 홈부식에 미치는 유동 해석)

  • Kim, Yong;Jang, Hyeuk;Ryu, Duck-Hee;Kim, Jae-Seong;Lee, Bo-Young;Boo, Joon-Hong
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1-6
    • /
    • 2004
  • Lots of researches were gone already about grooving corrosion mechanism of ERW carbon steel pipe. But there is seldom study for water hammer happened by fluid and acceleration of corrosion rate by incresed flow velocity. Therefore, in this study carried out the analysis based on hydrodynamic and fracture mechanics. Analyzed stress that act on a pipe using ANSYS as a program, and also FLUENT and STAR-CD were used for flow phenomenon confirmation. As the result, fatigue failure is happened by water hammer and corrosion rate was increased because of turbulent flow.

  • PDF

A Numerical Analysis of Unsteady Flow in a Rotor Blade Passage by Wake Passing (후류장에 의한 가스터빈 회전익 통로내 비정상 유동의 수치해석적 연구)

  • Kim, Youn J.;Jeon, Y. R.
    • 유체기계공업학회:학술대회논문집
    • /
    • 1998.12a
    • /
    • pp.233-239
    • /
    • 1998
  • The effects of unsteady flow on gas turbine, particularly on a rotor blade surface are numerically investigated. The unsteady flow in a rotor blade passage as a result of wake/blade interaction is modeled by the inviscid flow approach, and solved by the Euler equations using a time accurate marching scheme, Numerical results show that for the case of $P_s/ P_r= 1.5$, the velocity and pressure distribution on the blade surfaces have much more complex profiles than those of $P_s/ P_r= 1.0$.

  • PDF

Analysis of Duct Flow Characteristics under an Electromagnetic Force (전자기력에 의한 덕트 내부의 유동특성)

  • Kim, Min-Seok;Kim, Jung-Hyun;Jeon, Mun-Ho;Kim, Chang-Eob;Kim, Seo-Hyun;Kwon, Jeong-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2007.04c
    • /
    • pp.141-143
    • /
    • 2007
  • This paper presents the MHD characteristics of the liquid metal flow. The electromagnetic force was calculated by the equivalent circuit method. This Lorentz force was used as a source term for the fluid flow equations. The modified Navier-Stokes equation was solved to give the velocity distributions of the liquid metal flow.

  • PDF