• Title/Summary/Keyword: fluid flow velocity

Search Result 1,740, Processing Time 0.036 seconds

Flow Characteristics of Ejector Driven Pipe According to the Changes of Diameter Ratio and End Position (이젝터 구동관로의 직경비와 끝단의 위치 변화에 따른 유동특성)

  • Kim, Noh Hyeong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.1
    • /
    • pp.45-51
    • /
    • 2016
  • This study conducted CFD analysis on the mean velocity vector of distribution of the ejector driven pipe while changing the inlet velocity to 1 m/s at the diameter ratio of diffuser of 1:3, 1:2.25, 1:1.8 with the end position of driven pipe at 1, 1.253, 1.333, 1.467 respectively, which used $k-{\varepsilon}$/High Reynolds Number for the turbulence model, SIMPLE method for the analysis algorithm, and PIV experiment to verify the CFD analysis. As a result of the CFD analysis the optimum diameter ratio of ejector driven pipe was 1:3, the optimum end position of driven pipe was 1.333 for the diameter ratio of 1:3, 1:2.25, 1:1.8 and the PIV experiment obtained the same result as the CFD analysis. Therefore, the numerical analysis of the flow characteristics of ejector can be used for the optimum design implementation on ejector system.

Flow Characteristics of a Jet Pump by the Angle Variation of a Suction Pipe (분사펌프의 흡입관 각도 변화에 따른 유동특성)

  • Kim, Noh Hyeong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.6
    • /
    • pp.61-67
    • /
    • 2016
  • In this study, STAR-CD-based CFD techniques was used to analyze velocity distribution and pressure distribution according to the variation of angels at $45^{\circ}$, $60^{\circ}$ and $90^{\circ}$ a suction pipe when inlet velocity condition is 1 m/s. SIMPLE maritime law used for analytical algorithm and the results of CFD analysis evaluated by particle image velocimetry (PIV). The results of CFD analysis in this study have revealed that the optimal angle of a suction pipe for a jet pump is $90^{\circ}$ and the PIV test has showed the same results. Therefore, it is thought that when CFD is used to analyze the flow characteristics of a jet pump it would be possible to produce optimal designs of its devices.

One-Dimensional Analysis of Full Load Draft Tube Surge Considering the Finite Sound Velocity in the Penstock

  • Chen, Changkun;Nicolet, Christophe;Yonezawa, Koichi;Farhat, Mohamed;Avellan, Francois;Tsujimoto, Yoshinobu
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.3
    • /
    • pp.260-268
    • /
    • 2009
  • The effects of acoustic modes in the penstock on the self-excited oscillation in hydraulic power system were studied by assuming a finite sound velocity in the penstock. The flow in the draft tube is considered to be incompressible assuming that the length of the draft tube is smaller than the wavelength of the oscillation. It was found that various acoustic modes in the penstock can become unstable (amplified) by the diffuser effect of the draft tube or the effect of swirl flow from the runner. Their effects on each mode are discussed.

A study on heat transfer characteristics and pressure drop of heat transfer by baffle cut rate (배플 플레이트를 갖는 열교환기의 열전달 및 압력강하에 관한 연구)

  • Bae, Sung-Woo;Choi, Soon-Ho;Yoon, Seok-Hoon;Oh, Cheol
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.172-177
    • /
    • 2005
  • The object of this experiment is comparing heat transfer performance and pressure drop characteristics by baffle cut rate, fluid velocity and heating temperature. Experiments were carried out in cross flow heat exchanger with water as a working fluid. In this experiment, baffle cut rate is 30%, 40%, 50%, velocity is 0.5m/s, 1.0m/s, 1.5m/s, and heating temperature is $30^{\circ}C$, $40^{\circ}C$, $50^{\circ}C$. An experimental device to measure the heat transfer coefficient was constructed. The experimental result were obtained for the fully developed turbulent flow of water in tube on the condition of uniform heat flux.

  • PDF

Optimization of Blade Profile of a Plenum Fan

  • Wu, Lin;Dou, Hua-Shu;Wei, Yikun;Chen, Yongning;Cao, Wenbin;Ying, Cunlie
    • International Journal of Fluid Machinery and Systems
    • /
    • v.9 no.1
    • /
    • pp.95-106
    • /
    • 2016
  • A method of optimization design for the blade profile of a centrifugal impeller by controlling velocity distribution is presented, and a plenum fan is successfully designed. This method is based on the inner flow calculation inside the centrifugal impeller, and is related to the distribution of relative velocity. The results show that after optimization, the boundary layer separation on the suction surface has been inhibited and the stability of plenum fan is improved. The flow at the impeller outlet is also studied, and the jet-wake pattern at the impeller outlet is improved obviously by optimization. The calculation result shows that the static pressure and static pressure efficiency can be increased by 15.4% and 21.4% respectively.

Flow Past Airfoil Moving Reciprocally in a Channel by Vortex Method

  • Ro Ki-Deok
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.8
    • /
    • pp.1248-1255
    • /
    • 2006
  • The velocity and pressure fields of a ship's propulsion mechanism of the Weis-Fogh type, in which a airfoil moves reciprocally in a channel, are studied in this paper using the advanced vortex method. The airfoil and the channel are approximated by a finite number of source and vortex panels, and the free vortices are introduced from the body surfaces. The viscous diffusion of fluid is represented using the core-spreading model to the discrete vortices. The velocity is calculated on the basis of the generalized Biot-Savart law and the pressure field is calculated from integrating the equation given by the instantaneous velocity and vorticity fields. Two-dimensional unsteady viscose flows of this propulsion mechanism are numerically clarified, and the calculated results agree well with the experimental ones.

Real-Time Water Wave Simulation with Surface Advection based on Mass Conservancy

  • Kim, Dong-Young;Yoo, Kwan-Hee
    • International Journal of Contents
    • /
    • v.4 no.2
    • /
    • pp.7-12
    • /
    • 2008
  • In this paper, we present a real-time physical simulation model of water surfaces with a novel method to represent the water mass flow in full three dimensions. In a physical simulation model, the state of the water surfaces is represented by a set of physical values, including height, velocity, and the gradient. The evolution of the velocity field in previous works is handled by a velocity solver based on the Navier-Stokes equations, which occurs as a result of the unevenness of the velocity propagation. In this paper, we integrate the principle of the mass conservation in a fluid of equilateral density to upgrade the height field from the unevenness, which in mathematical terms can be represented by the divergence operator. Thus the model generates waves induced by horizontal velocity, offering a simulation that puts forces added in all direction into account when calculating the values for height and velocity for the next frame. Other effects such as reflection off the boundaries, and interactions with floating objects are involved in our method. The implementation of our method demonstrates to run with fast speed scalable to real-time rates even for large simulation domains. Therefore, our model is appropriate for a real-time and large scale water surface simulation into which the animator wishes to visualize the global fluid flow as a main emphasis.

A Study on Effects of Temperature Difference between the Inside and Outside the Meter-Run on Natural Gas Flow Measurement Errors (천연가스 계량배관 내$\cdot$외의 온도차가 계량오차에 미치는 영향에 관한 연구)

  • Ha Youngcheol;Lee Chulgu;Chang Seungyong;Lee Kangjin
    • Journal of the Korean Institute of Gas
    • /
    • v.2 no.1
    • /
    • pp.83-89
    • /
    • 1998
  • Experiments had been conducted Qualitatively regarding flow measurement errors of orifice flowmeter due to temperature difference between the inside and outside the natural gas meter-run in case of no pipe insulations. The primary factors considered in this study are fluid velocity and surrounding temperature. In addition, a portion of thermal radiation due to the sun was involved as a factor. The results showed that the considerable errors were not detected even in conditions of low flow rates and large temperature difference between the inside and outside the meter-run.

  • PDF

Flow-Field Analysis for Designing Bipolar Plate Patterns in a Proton Exchange Membrane Fuel Cell (연료전지 분리판의 형상설계를 위한 유동해석)

  • Park, Jeong-Seon;Jeong, Hye-Mi
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.9
    • /
    • pp.1201-1208
    • /
    • 2002
  • A numerical flow-field analysis is performed to investigate flow configurations in the anode, cathode and cooling channels on the bipolar plates of a proton exchange membrane fuel cell (PEMFC). Continuous open-faced flow channels are formed on the bipolar plate surface to supply hydrogen, air and water. In this analysis, two types of channel pattern are considered: serpentine and spiral. The averaged pressure distribution and velocity profiles of the hydrogen, air and water channels are calculated by two-dimensional flow-field analysis. The equations for the conservation of mass and momentum in the two-dimensional fluid flow analysis are slightly modified to include the characteristics of the PEMFC. The analysis results indicate that the serpentine flow-fields are locally unstable (because two channels are cross at right angles). The spiral flow-fields has more stable than the serpentine, due to rotational fluid-flow inertia forces. From this study, the spiral channel pattern is suggested for a channel pattern of the bipolar plate of the PEMFC to obtain better performance.

An Experimental Study on the Influential Factors of Flow Measurement with Coriolis Mass Flowmeter (코리올리스 질량유량계의 유량측정에 영향을 미치는 인자에 관한 실험적 연구)

  • Lim, Ki-Won;Lee, Woan-Kyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.12
    • /
    • pp.1699-1707
    • /
    • 2003
  • Coriolis mass flowmeter(CMF), which can measure the mass flow directly, is getting rapid attention for the industrial and custody transfer purpose. In order to study the characteristics and the applicability of CMF, it is tested with the national flow standard system. Two types of sensing tube, U-type and straight type, are employed in the test. Water, spindle oil and viscosity Standard Reference Material whose viscosities are 1, 20 and, 67 $\textrm{mm}^2$/s, respectively, are studied. It is shown that the linearity of CMF is getting deteriorated as the fluid viscosity increases, which is due to the zero drift and the relaxation time of the fluid. To test its applicability in the case of high pressured gas, it is calibrated using compressed air, It shows 1∼l.6 % deviations compared to the calibration results using water. It concludes that the fluid velocity in CMF should be lower than the sonic velocity. In addition, the effects of the vibration from the pipeline and pump on CMF as well as the long term stability are studied.