• Title/Summary/Keyword: fluid flow velocity

Search Result 1,740, Processing Time 0.03 seconds

Evaluation of Air Flow Characteristics in accordance with Types of Waveguide-Below-Cutoff (WBC) Arrays and Their Shielding Effectiveness of Electromagnetic Pulse (EMP) (EMP 차폐를 위한 도파관 형상과 SE에 따른 유동 특성 평가)

  • Pang, Seung-Ki;Ahn, Hye-Rin;Yook, Jong-Gwan
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.12 no.3
    • /
    • pp.1-8
    • /
    • 2016
  • In this study, we evaluated the flow characteristics of various types of waveguide-below-cutoff (WBC) arrays and their shielding effectiveness (SE) of electromagnetic pulses (EMP) based on computational fluid dynamics (CFD). Three types of waveguides were selected for analysis: (1) grid type, (2) honeycomb type, and (3) multi-layer types (2-ply, 4-ply, 6-ply, and 8-ply). To analyze the air flow characteristics, the flow velocities in the longitudinal center of the WBC and the differential pressures between the WBC array inlet and outlet were evaluated. Consequently, we derive the following conclusions: (1) despite an increase in the inlet velocity, the pressure drop of the 6-ply multi-layer type did not significantly increase as compared to that of other types of waveguides (waveguide thickness of 0.1 mm, SE of 100 dB); (2) the grid and honeycomb type had the fastest flow rate of 17.5 m/s, which is approximately 2.5 m/s faster than that at the inlet (waveguide thickness of 1 mm, module size of 30 mm); and (3) the average pressure drop of the grid type waveguide is the lowest in the overall model, whereas that of the 8-ply is the highest (waveguide thickness of 1 mm, module size of 30 mm, and SE of 80, 100 dB).

Numerical Study on Heat Transfer Characteristics of Turbulent Flow in Transition Duct (안내덕트 내부 난류유동구조에 따른 열전달 특성변화 수치해석)

  • Yoo, Geun-Jong;Choi, Hoon-Ki;Choi, Kee-Lim
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.9
    • /
    • pp.923-932
    • /
    • 2011
  • Because of the instability of a flow pattern in the inlet transition square duct (hereinafter referred to as "transition duct") of a heat recovery steam generator (hereinafter referred to as "HRSG") in a combined cycle power plant, the Reynolds number in the first row of a tube bank is differs sharply from that in the sectional area of the transition duct. This causes differences in the heat flux in each tube in the tube bank. The computational fluid dynamics (CFD) predictions provide three-dimensional results for velocity, temperature, and other flow parameters over the entire domain of the duct and HRSG. A renormalization group theory (RNG) based k-${\epsilon}$�� turbulent model is used for obtaining the results cited in this study. A porous media option is used for modeling the tube banks and the number of transfer units method is used for determining the heat transfer characteristics. This study describes a comparison between the numerical simulation results and actual design output.

Experimental Study on Effects of Inlet Boundary Layer Thickness and Boundary Layer Fence in a Turbine Cascade (터빈 캐스케이드 입구경계층 두께와 경계층 펜스 효과에 대한 실험적 연구)

  • Jun, Y.M.;Chung, J.T.
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.853-858
    • /
    • 2000
  • The working fluid from the combustor to the turbine stage of a gas turbine makes various boundary layer thickness. Since the inlet boundary layer thickness is one of the important factors that affect the turbine efficiency. It is necessary to investigate secondary flow and loss with various boundary layer thickness conditions. In the present study, the effect of various inlet boundary layer thickness on secondary flow and loss and the proper height of the boundary layer fences for various boundary layer thickness were investigated. Measurements of secondary flow velocity and total pressure loss within and downstream of the passage were taken under 5 boundary layer thickness conditions, 16, 36, 52, 69, 110mm. It was found that total pressure loss and secondary flow areas were increased with increase of thickness but they were maintained almost at the same position. At the fellowing research about the boundary layer fences, 1/6, 1/3, 1/2 of each inlet boundary layer thickness and 12mm were used as the fence heights. As a result, it was observed that the proper height of the fences was generally constant since the passage vortex remained almost at the same position. Therefore once the geometry of a cascade is decided, the location of the Passage vortex and the proper fence height are appeared to be determined at the same time. When the inlet boundary layer thickness is relatively small, the loss caused by the proper fence becomes bigger than endwall loss so that it dominates secondary loss. In these cases the proper fence hight is decided not by the cascade geometry but by the inlet boundary layer thickness as previous investigations.

  • PDF

Well Loss in Fractured Rock Formation with Radial Flow during Pumping Test (양수시험시 방사상흐름을 보이는 균열암반 대수층에서의 우물손실)

  • 이철우;이대하;정지곤;김구영;김용제
    • Journal of Soil and Groundwater Environment
    • /
    • v.7 no.4
    • /
    • pp.17-23
    • /
    • 2002
  • Pumping tests were carried out from seven wells in fractured rocks. The time-drawdown data were obtained from pumping wells and corrected for the elapsed time of step drawdown test using Cooper-Jacob's method. A statistical method. the least square of error, was used to yield the coefficient of aquifer losses, the coefficient of well losses, and the power which indicates the severity of the turbulence. The values of the power range from 1.65 to 6.48. The well losses result mainly from turbulent flow caused by radial flow nearby pumping wells. The turbulent flow depends on Reynolds number. Since the hydraulic characteristics of fractured rocks control the fluid velocity, the value of the power is an important factor to understand the aquifer system of fractured rocks.

The experimental research on periodic airflow in human nasal cavity (비강내 주기유동장의 실험적 해석에 관한 연구)

  • Kim, Sung-Kyun;Son, Yeong-Rak;Sin, Seok-Jae
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1687-1692
    • /
    • 2004
  • Airflow in the nasal cavity of a normal Korean adult is investigated experimentally by tomographic PIV measurement. Knowledge of airflow characteristics in nasal cavities is essential to understand the physiology and pathology aspects of nasal breathing. Several studies have utilized physical models of the healthy nasal cavity to investigate the relationship between nasal anatomy and airflow. All of these researches on nasal airflow are under the condition of constant flow-rate. In this study, nasal cavity flow with the physiological period is investigated by tomographic PIV, for the first time. A pumping system that can produce the periodic flow is created. Thanks to a new method for the model casting by a combination of the rapid prototyping and curing of clear silicone, a transparent rectangular box containing the complex nasal cavity can be made for PIV. The CBC PIV algorithm is used for analysis. Phase-averaged mean and RMS velocity distributions are obtained for inspirational and expiration nasal airflows. The comparison with the constant flow case is appreciated. There exist many flow patterns depending on each phase.

  • PDF

Comparison of Load Ratio of Load-cell type Anemometer with Windswept Shape Variation (수풍부 형상에 따른 로드 셀형 풍향풍속계의 하중 비 비교)

  • Kim, Tae-Hyeong;Han, Dong-Seop
    • Journal of Navigation and Port Research
    • /
    • v.36 no.10
    • /
    • pp.839-844
    • /
    • 2012
  • Anemometer is a meteorological instrument that measures wind direction and wind speed in real time, and is mounted to the cranes that are used at ports, shipbuilding yards, off-shore structure, or construction sites that are influenced by wind, and it is used in conjunction with the safety system. Load cell-type anemometer measures the wind direction through the ratio of load between 4 positions by mounting the thin plate to 4 load cells, and measures wind velocity through the summation of loads. According to previous research, the load ratio between two adjacent windswept with respect to the wind direction has unstable value due to vortex around windswept. This causes the result that increases an error on the wind direction. In this study we compared and analyzed the difference between the load ratio with respect to three type windswept shapes in order to suggest the proper windswept shape to reduce this error. The computational fluid flow analysis is carried out with ANSYS CFX to analyze the load ratio between three windswept shapes. Wind direction was adopted as the design variable, and selected 9 wind direction conditions from $0^{\circ}{\sim}90^{\circ}$ with $11.25^{\circ}$ interval for computational fluid flow analysis.

A Study on Numerical Calculations of Hybrid Air Pollution Control System Coupled with SDR and Bag Filter(II) -Structural Improvement (반건식 반응기와 백필터를 결합한 하이브리드 대기오염제어 시스템의 수치해석적 연구(II) -구조개선을 중심으로)

  • Kim, Jin-Uk;Jung, Yu-Jin;Yoo, Jeong-Kun;Shon, Byung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.2
    • /
    • pp.985-992
    • /
    • 2011
  • The 3D computational fluid dynamics (CFD) was performed in relation to the internal fluid characteristics and flow distribution for the development of the most optimal model in the complex post-disposal device. As it is expected that a channeling (drift) would be made by the semi-dry reactor due to the large difference in the flow distribution by the compartment in the bag filter, a structural improvement should be urgently made for more uniformed flow distribution in the bag filter. Three types of modifications such as i) changing the plenum shape, ii) orifice install in the exit part of cleaned gas, iii) increasing the plenum number were established. From the results of computational fluid dynamics, it was revealed that the changing of plenum shape and orifice install in the exit part of cleaned gas was more reasonable than the increasing the plenum number because of the difficulties of retrofit. The complex post-disposal device, modified and supplemented with this analysis, integrated the semi-dry reactor and the bag filter in a single body, so it follows that the improvement can make the device compact, save the installation area, save the operation fee, and management more convenient.

A Study on the Flow Analysis for KP505 Propeller Open Water Test (KP505 프로펠러의 단독성능 시험을 위한 유동해석에 관한 연구)

  • Lee, Han-Seop;Kim, Min-Tae;Kim, Won-Seop;Lee, Jong-Hoon;Park, Sang-Heup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.9
    • /
    • pp.150-155
    • /
    • 2019
  • Cavitation refers to a phenomenon in which empty spaces occur in a fluid due to changes in pressure and a velocity. When a liquid moves at a high speed, the pressure drops below the vapor pressure, and vapor bubbles are generated in the liquid. This study used CFD to analyze the flow of fluid machinery used in marine and offshore plants. The goals are to ensure the validity of the analysis method for marine propellers in an open water test, to increase the forward ratio, and to use FLUENT to understand the flow pattern due to cavitation. A three-dimensional analysis was performed and compared with experimental data from MOERI. The efficiency was highest at advance ratios of 0.7 - 0.8. Thrust was generated due to the difference between the pressure surface and the suction surface, and it was estimated that bubbles would be generated in the vicinity of the back side surface rather than the face side of the propeller, resulting in more cavitation. The cavitation decreased sharply as the advance ratio increased. The thrust and torque coefficients were comparable to those of the MOERI experimental data except at the advance ratio of 1, which showed a difference of less than 5%. Therefore, it was confirmed that CFD can evaluate an open water propeller test.

Horizontal-Axis Screw Turbine as a Micro Hydropower Energy Source: A Design Feasibility Study (마이크로 수력 에너지원의 수평축 스크류 터빈 : 설계 타당성 연구)

  • SHAMSUDDEEN, MOHAMED MURSHID;KIM, SEUNG-JUN;MA, SANG-BUM;KIM, JIN-HYUK
    • Journal of Hydrogen and New Energy
    • /
    • v.33 no.1
    • /
    • pp.95-104
    • /
    • 2022
  • Micro hydropower is a readily available renewable energy source that can be harvested utilizing hydrokinetic turbines from shallow water canals, irrigation and industrial channel flows, and run-off river stream flows. These sources generally have low head (<1 m) and low velocity which makes it difficult to harvest energy using conventional turbines. A horizontal-axis screw turbine was designed and numerically tested to extract power from such low-head water sources. The 3-bladed screw-type turbine is placed horizontally perpendicular to the incoming flow, partially submerged in a narrow water channel at no-head condition. The turbine hydraulic performances were studied using Computational Fluid Dynamics models. Turbine design parameters such as the shroud diameter, the hub-to-shroud ratios, and the submerged depths were obtained through a steady-state parametric study. The resulting turbine configuration was then tested by solving the unsteady multiphase free-surface equations mimicking an actual open channel flow scenario. The turbine performance in the shallow channel were studied for various Tip Speed Ratios (TSR). The highest power coefficient was obtained at a TSR of 0.3. The turbine was then scaled-up to test its performance on a real site condition at a head of 0.3 m. The highest power coefficient obtained was 0.18. Several losses were observed in the 3-bladed turbine design and to minimize losses, the number of blades were increased to five. The power coefficient improved by 236% for a 5-bladed screw turbine. The fluid losses were minimized by increasing the blade surface area submerged in water. The turbine performance was increased by 74.4% after dipping the turbine to a bottom wall clearance of 30 cm from 60 cm. The final output of the novel horizontal-axis screw turbine showed a 2.83 kW power output at a power coefficient of 0.63. The turbine is expected to produce 18,744 kWh/year of electricity. The design feasibility test of the turbine showed promising results to harvest energy from small hydropower sources.

Modeling of Hemodynamics in Stenosed Artery (협착 동맥혈관의 혈류유동 모델링)

  • Kim, Seong-Jong;Park, Young-Ran;Kim, Shagn-Jin;Kang, Hyung-Sub;Kim, Jin-Shang;Oh, Sung-Hoon;Kang, Sung-Jun;Kim, Gi-Beum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.5
    • /
    • pp.2285-2290
    • /
    • 2012
  • This study is about atherosclerosis which occupies the highest rate in many diseases people have and we have studied about atherosclerosis for abdominal aorta. Atherosclerosis is the phenomenon which blood vessel gets narrower, harder and thicker due to the stenosis of colesterol in blood vessel. If it becomes worse, arteries will be hard and blood can't flow smoothly, and even it can reach to death. In this study, the geometric models of the considered stenotic blood flow are two different types of constriction of cross-sectional area of blood vessel; 20 and 45% of constriction in each elastic wall and rigid wall. We have modeled by using finite element method to observe the changes of velocity and pressure. In case of the diameter of blood vessel decreased 45% in elastic wall model, the values of velocity and pressure were higher than the case of 20% and in case of the diameter of blood vessel decreased 45% in rigid wall model, the values of velocity and pressure were higher than the case of 20%. In cases of elastic wall models of the diameters of blood vessels decreased each of 20% and 45%, recirculation zones appeared. This results show understanding of hemodynamic properties depending on stenosed blood vessels.