• Title/Summary/Keyword: fluid flow velocity

Search Result 1,740, Processing Time 0.041 seconds

Electrokinetic flow and electroviscous effect in a charged slit-like microfluidic channel with nonlinear Poisson-Boltzmann field

  • Chun, Myung-Suk;Kwak, Hyun-Wook
    • Korea-Australia Rheology Journal
    • /
    • v.15 no.2
    • /
    • pp.83-90
    • /
    • 2003
  • In cases of the microfluidic channel, the electrokinetic influence on the transport behavior can be found. The externally applied body force originated from the electrostatic interaction between the nonlinear Poisson-Boltzmann field and the flow-induced electrical field is applied in the equation of motion. The electrostatic potential profile is computed a priori by applying the finite difference scheme, and an analytical solution to the Navier-Stokes equation of motion for slit-like microchannel is obtained via the Green's function. An explicit analytical expression for the induced electrokinetic potential is derived as functions of relevant physicochemical parameters. The effects of the electric double layer, the zeta potential of the solid surface, and the charge condition of the channel wall on the velocity profile as well as the electroviscous behavior are examined. With increases in either electric double layer or zeta potential, the average fluid velocity in the channel of same charge is entirely reduced, whereas the electroviscous effect becomes stronger. We observed an opposite behavior in the channel of opposite charge, where the attractive electrostatic interactions are presented.

A Numerical Study on Nonlinear Flow in Porous Medium (다공성 매질에서 비선형 흐름에 대한 수치적 연구)

  • Jeong, Woo Chang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.384-384
    • /
    • 2017
  • In this study, the numerical investigation of nonlinear flow in a porous medium was carried out. The applied numerical model is ANSYS CFX which is a three-dimensional fluid dynamic model, and the verification of this model was carried out by using the experimental data obtained from Mayer et al works(2011). The experimental and numerical results of velocity and Reynolds number-friction coefficient relationship show relatively a good agreement. Based on the experimental results, we analysed numerically the velocity and Reynolds number-friction coefficient relationship with the variation of permeability, dynamic viscosity and porosity and quantitatively the variation by applying the best curve fitting for each case.

  • PDF

Simulation of Various Baffle Types in a Constructed Wetland Sedimentation Tank using CFD (CFD를 이용한 Hybrid 인공습지의 초기침강지 저류판 구조 모의)

  • Noh, Taegyun;Jeon, Jechan;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.18 no.3
    • /
    • pp.324-329
    • /
    • 2016
  • Constructed wetlands are widely applied in urban and rural areas for various purposes such as pollutants reduction, acquisition of eco-spaces and habitats, flooding reduction, acquisition of water resources and environmental education. Since the design of constructed wetlands utilizes ecosystems, special consideration must be given to ecological mechanisms, environmental mechanisms and hydrological mechanisms. To ensure the sustainable functionality of constructed wetlands, it is necessary to achieve stable flow rate and velocity, and remove sediments to ensure sufficient space for detention. To enhance the efficiency of constructed wetland sedimentation basins, this study determined the optimal position for baffle installation, and applied Computational Fluid Dynamics (CFD) to the cross-sectional design of wetlands. CFD analysis revealed that the decrease in flow velocity with baffle installation enhanced the efficiency of sedimentation of particulate matters. Vertical baffles had higher sedimentation efficiency than those with an inclined angle. When vertical baffles were installed in the sedimentation basin of a hybrid constructed wetland to reduce non-point source pollutants in urban areas, the average flow velocity within the basin decreased by 10~30%, while the sedimentation efficiency improved by 1.3~1.5 times. The application of CFD to constructed wetlands is expected to improve the cost efficiency of designing hybrid constructed wetlands with high removal efficiency.

Numerical Analysis of Incompressible Viscous Flow with Free Surface Using Pattern Filling and Refined Flow Field Regeneration Techniques (형상충전기법과 세분화된 유동장 재생성기법을 이용한 자유표면을 가진 비압축성 점성유동의 수치적 모사)

  • Jeong, Jun-Ho;Yang, Dong-Ryeol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.3
    • /
    • pp.933-944
    • /
    • 1996
  • In this paper, two new techniques, the pattern filling and the refined flow field regeneration, based on the finite element method and Eulerian mesh advancement approach have been developed to analyze incompressible viscous flow with free surfaces. The gorerning equation for flow analysis is Navier-Stokes equation including inertia and gravity effects. The penalty and Newton-Raphson methods are used effectively for finite element formulation. The flow front surface and the volume inflow rate are calculated using the pattern filling technique to select an adequate pattern among five filling patterns at each quadrilateral control volume. By the refined flow field regeneration technique, the new flow field which renders better prediction in flow surface shape is generated and the velocity field at the flow front part is calculated more exactly. Using the new thchniques to be developed, the dam-breaking problem has been analyzed to predict flow phenomenon of fluid and the predicted front positions versus time have been compared with the reported experimental result.

Characteristics of Shear Layer Vortices in Crossflow Jets According to the Inlet Conditions (초기조건변화에 따른 횡단류 제트 유동의 전단층와류 거동 특성)

  • Kim, Gyeong-Cheon;Kim, Sang-Gi;Yun, Sang-Yeol;Lee, Seok-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.3
    • /
    • pp.394-401
    • /
    • 2002
  • The instantaneous flow characteristics of a round jet issuing normally into a crossflow has been studied using a flow visualization technique and particle image velocimetry. The effects of parameters such as jet inflow profile and turbulence intensity of the jet are evaluated for various Reynolds numbers in range between 735 and 3150, which are based on the crossflow velocity and jet-pipe diameter. The jet-to-crossflow velocity ratio is fixed at the value of 3.3. Instantaneous later tomographic images of the symmetry plane of the crossflow jet show that there exist very different natures in the flow structures of the near-field of the jet even though the velocity ratio is same. It is found that when the turbulence intensity of jet is elevated, the shear layer becomes much thicker due to the strong entrainment of the ambient fluid by turbulent interaction between the jet and crossflow. The detailed characteristics of instantaneous velocity and vorticity fields are presented to illustrate the effects of the above parameters on the vertical structures of the crossflow jet.

Numerical Study on the Characteristics of Fluid Flow and Pressure Fluctuation around Human Knuckle in Hydrogymnastics (수중 운동 시 손관절 부위의 유동 및 압력변동 특성에 대한 해석적 연구)

  • Choi, Ji-Hyun;Park, Sung-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.6
    • /
    • pp.390-395
    • /
    • 2019
  • Hydrogymnastics so that sufficient exercise effect can be obtained using the resistance of water has a positive effect on patients who have to receive arthritis or rehabilitation treatment. However, the studies on the effect are insufficient, and the main cause of their effects has not been unclear yet. In this study, in order to identify the main cause of the effects of Hydrogymnastics, conducted Unsteady fluid flow simulation under the same conditions as the actual environment. The analysis model based on real hands, and the pressure fluctuation applied to the knuckle was analyzed by the computational fluid method. During the underwater movement of the hands, Various sizes of vortices were generated between fingers due to skin surface velocity and flow resistance. Pressure of about -500 Pa to +500 Pa is applied by the vortex flow. Also It was confirmed that the positive pressure and the negative pressure were continuously repeated up to maximum + 2000 Pa at the minimum of -2000 Pa at the portion where the direction was changed. Pressure fluctuations with a frequency of 20 Hz to 70 Hz were added continuously for each knuckle. These continuous pressure fluctuations provide a direct massage effect on the knuckles, an It is judged that the blood circulation at the relevant part is positively affected.

Numerical Study of Heat Flux and BOG in C-Type Liquefied Hydrogen Tank under Sloshing Excitation at the Saturated State (포화상태에 놓인 C-Type 액체수소 탱크의 슬로싱이 열 유속과 BOG에 미치는 변화의 수치적 분석)

  • Lee, Jin-Ho;Hwang, Se-Yun;Lee, Sung-Je;Lee, Jang Hyun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.5
    • /
    • pp.299-308
    • /
    • 2022
  • This study was conducted to predict the tendency for heat exchange and boil-off gas (BOG) in a liquefied hydrogen tank under sloshing excitation. First, athe fluid domain excited by sloshing was modeled using a multiphase-thermal flow domain in which liquid hydrogen and hydrogen gas are in the saturated state. Both the the volume of fluid (VOF) and Eulerian-based multi-phase flow methods were applied to validate the accuracy of the pressure prediction. Second, it was indirectly shown that the fluid velocity prediction could be accurate by comparing the free surface and impact pressure from the computational fluid dynamics with those from the experimental results. Thereafter, the heat ingress from the external convective heat flux was reflected on the outer surfaces of the hydrogen tank. Eulerian-based multiphase-heat flow analysis was performed for a two-dimensional Type-C cylindrical hydrogen tank under rotational sloshing motion, and an inflation technique was applied to transform the fluid domain into a computational grid model. The heat exchange and heat flux in the hydrogen liquid-gas mixture were calculated throughout the analysis,, whereas the mass transfer and vaporization models were excluded to account for the pure heat exchange between the liquid and gas in the saturated state. In addition, forced convective heat transfer by sloshing on the inner wall of the tank was not reflected so that the heat exchange in the multiphase flow of liquid and gas could only be considered. Finally, the effect of sloshing on the amount of heat exchange between liquid and gas hydrogen was discussed. Considering the heat ingress into liquid hydrogen according to the presence/absence of a sloshing excitation, the amount of heat flux and BOG were discussed for each filling ratio.

A Numerical Study on the Flow and Heat Transfer Characteristics of Aluminum Pyramidal Truss Core Sandwich (알루미늄 피라미드 트러스 심재 샌드위치의 열유동 특성에 관한 수치해석 연구)

  • Kang, Jong-Su;Kim, Sang-Woo;Lim, Jae-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.638-644
    • /
    • 2019
  • In this study, the fluid flow and heat transfer characteristics within sandwich panels are investigated using computational fluid dynamics. Within the sandwich panels having periodic cellular cores, air can freely move inside the core section so that the structure is able to perform multi-functional roles such as simultaneous load bearing and heat dissipation. Thus, there needs to examine the thermal and flow analysis with respect to design variables and various conditions. In this regard, ANSYS Fluent was utilized to explore the flow and heat transfer within the pyramidal truss sandwich structures by varying the truss angle and inlet velocity. Without the entry effect in the first unitcell, the constant rate of pressure and the constant rate of Nusselt number was observed. As a result, it was demonstrated that Nusselt number increases and friction factor decreases as the inlet velocity increases. Moreover, the rate of Nusselt number and friction factor was appreciable in the range of V=1-5m/s due to the transition from laminar to turbulent flow. Regarding the effect of design variable, the variation of truss angle did not significantly influence the characteristics.

The Fluid Flow and Heat Storage Performance in Thermal Storage Bed using Gravel (자갈축열층의 공기유동 및 축열성능)

  • Lee, Jong Won
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.3
    • /
    • pp.75-81
    • /
    • 2014
  • Fossil energy is needed for a whole year greenhouse cropping due to climate in South Korea. Because the most of the fossil energy resources is imported, it is necessary to develop technology to be able to reduce the energy cost in order to manage greenhouse profitably. The greenhouse commonly consume less amount of energy as compared to other industrial sectors. Replacement of fossil fuel with solar thermal storage, therefore, can be an economical as well as environmentally sustainable option for greenhouse heating. The fluid flow, heat storage and radiation characteristic of the gravel bed model were analyzed to provide basic data for design of the experimental solar heated greenhouse with underground thermal storage using gravel. The air flow velocity in the gravel storage bed was proven to be affected from the capacity of circulation fan and the circulation method and the positive pressure method was proven to be the best among the different air circulation methods. The initial air temperature of the thermal storage bed of 1.2 m $wide{\times}9$ m $long{\times}0.9$ m deep was $10^{\circ}C$. After the thermal storage bed is heated by air of the mean temperature $4^{\circ}C$ during 9 hours, the temperature has increased about $20.3^{\circ}C$ and the storage of heat was about 33,000 kcal. The important factors should be taken into consideration for design of the solar heated greenhouse with underground thermal storage using gravel are insulation of rock storage, amount of storing heat, inflow rate and direction of inlet and outlet duct.

Characterization of flow properties of pharmaceutical pellets in draft tube conical spout-fluid beds

  • Foroughi-Dahr, Mohammad;Sotudeh-Gharebagh, Rahmat;Mostoufi, Navid
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.68
    • /
    • pp.274-281
    • /
    • 2018
  • Experimental studies of the hydrodynamic performance of the draft tube conical spout-fluid bed (DCSF) were conducted using pharmaceutical pellets. The experiments were carried out in a DCSF consisted of two sections: (a) a conical section with the cross section of $120mm{\times}250mm$ and the height of 270 mm, (b) a cylindrical section with the diameter of 250 mm and the height of 600 mm. The flow characteristics of solids were investigated with a high speed camera and a pezoresistive absolute pressure transducer simultaneously. These characteristics revealed different flow regimes in the DCSF: packed bed at low gas velocities, fluidized bed in draft tube at higher gas velocities until minimum spouting, and spouted bed. The stable spouting was identified by the presence of two dominant frequencies of the power spectrum density of pressure fluctuation signature: (i) the frequency band 6-9 Hz and (ii) the frequency band 12-15 Hz. The pressure drops across the draft tube as well as the annulus measured in order to better recognize the flow structure in the DCSF. It was observed that the pressure drop across the draft tube, the pressure drop across the annulus, and the minimum spouting velocity increase with the increase in the height of draft tube and distance of the entrainment zone, but with the decrease in the distributor hole pitch. Finally, this study provided novel insight into the hydrodynamic of DCSF, particularly minimum spouting and stable spouting in the DCSF which contains valuable information for process design and scale-up of spouted bed equipment.