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Abstract

In cases of the microfluidic channel, the electrokinetic influence on the transport behavior can be found. The
externally applied body force originated from the electrostatic interaction between the nonlinear Poisson-Bolt-
zmann field and the flow-induced electrical field is applied in the equation of motion. The electrostatic poten-
tial profile is computed a priori by applying the finite difference scheme, and an analytical solution to the
Navier-Stokes equation of motion for slit-like microchannel is obtained via the Green’s function. An explicit
analytical expression for the induced electrokinetic potential is derived as functions of relevant phys-
icochemical parameters. The effects of the electric double layer, the zeta potential of the solid surface, and
the charge condition of the channel wall on the velocity profile as well as the electroviscous behavior are exam-
ined. With increases in either electric double layer or zeta potential, the average fluid velocity in the channel
of same charge is entirely reduced, whereas the electroviscous effect becomes stronger. We observed an oppo-
site behavior in the channel of opposite charge, where the attractive electrostatic interactions are presented.

Keywords : electrokinetic flow, electrostatic interaction, electroviscous effect, microfluidic channel, navier-
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1. Introduction

An understanding of the fundamental behavior of the
fluid flow in microchannels is of considerable importance
in the research fields of micro- and nanofluidics. Micro-
channels currently have wide applications in the design and
utilization of microfluidic devices, such as diagnostic
microdevices, biomedical microchips, microreactors, and
other MEMS (micro-electro mechanical system) devices
(Manz et al., 1994; Hu et al., 1999; Weilin et al., 2000). It
should be noted that laminar flow is the definitive char-
acteristic of microfluidics. Fluid flowing in microchannels
with dimensions on the order of tens or hundreds of
micrometers is characterized by low Reynolds number
(Stone and Kim, 2001; Karniadakis and Beskok, 2002).
Pressure-driven Poiseuille flow in a various type of channel
is well understood, but the fluid flow behavior in charged
microchannels is influenced by the electrokinetic effect and
hence deviates from that described by the traditional form
of the Navier-Stokes equation.

When a fluid is forced through a microchannel under an
applied pressure, the counter-ions in the mobile part of the
electric double layer (EDL) are carried toward the down-
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stream end. Then an electric current called the streaming
current results in the pressure-driven flow direction. Cor-
responding to this streaming current, there is an electro-
kinetic potential called the streaming potential. This flow-
induced streaming potential acts to drive the counter-ions
in the mobile part of the EDL to move in the direction
opposite to the streaming current. This flow of ions in the
opposite direction to the pressure-driven flow will generate
conduction current. The overall result is a reduced flow
rate in the direction of pressure drop. If the reduced flow
rate is compared with the flow rate of uncharged inert case,
it seems that the fluid would have a higher viscosity. This
rheological aspect is usually referred to as the electrovis-
cous effect. The effect of EDL is neglected, as the thick-
ness of the EDL is quite small. However, the EDL effect
cannot be neglected in the study of microchannel flow,
where the EDL thickness is comparable with the charac-
teristic size of the flow channel.

About forty years ago, the effect of the surface potential
on fluid transport through narrow cylindrical capillary with
the Debye-Hiickel approximation was discussed and the
electroviscous effect was also considered (Rice and White-
head, 1965). Later, the same problem with higher surface
potential was investigated by developing an approximate
solution to the Poisson-Boltzmann (P-B) equation pertain-
ing to an imposed electric field (Levine et al., 1975). In
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recent, the electroviscous effect on the electrokinetic flow
velocity in rectangular channel was estimated by solving
coupled equation of motion with P-B equation (Li, 2001;
Ren et al., 2001; Hsu et al., 2002). For slit-like micro-
channel with a linearized P-B field, analytical solutions
to the flow velocity and the flow-induced electrokinetic
potential have been obtained by employing the Green’s
function, where characteristic length scale is less than
tens of micrometers (Chun, 2002). Chun (2002) also
pointed out a necessity of further analysis on the behav-
ior of electrokinetic flows with respect to the nonlinear
full P-B field.

In this study, both the electrokinetic flow behavior and
the electroviscous effect in a slit-like microchannel are ana-
lyzed by applying the Green’s function formulation. The
electrostatic potential is firstly considered by solving the
nonlinear P-B equation using the finite difference method
(FDM), and then the equation of motion is developed by
dealing with the external body force and the relevant flow-
induced electrical field. We predict identically the electric
potential profile as well as the velocity profile with vari-
ations of ionic concentration of solution, zeta potential, and
charge condition of the channel wall. Finally, the elec-
troviscous effect is estimated by obtaining the ratio of the
apparent fluid viscosity to the inert bulk viscosity.

2.Flow field coupled with electrokinetic inter-
action

2.1. Flow through a charged slit-like channel

In principle, the Navier-Stokes equation furnishes the
paradigm for describing the equation of motion for an
incompressible ionic fluid, given by

p8t+p(v Vv=—Vp+F+nV’ (N
where p and 1 are the density and viscosity of the fluid,
respectively. Let us consider the one-dimensional laminar
flow through a slit-like channel, then v=[0, 0, v,(y)] is
taken with Cartesian coordinates (Happel and Brenner,
1983). Neglecting gravitational forces, the body force per
unit volume F ubiquitously caused by the z-directional
action of an induced electrical field E, on the net charge
density p, can be written F, = p.E,. With these identities,
Eq. (1) is reduced to

Ly _do_pr, @)
dy’

In view of taking a flow only in the z-direction in a slit
spaced a distance 2H apart, the velocity profile known as
a plane Poiseuille flow is obtained as v, = (H*/2n)(dp/dz)[ 1
— (y/H)*]. The p, for the full P-B electric field is described
in Section 3. One obtains the nondimensionalized equation
of motion, such that

n—

84

d’v_dp .
;I?=d—z+F1ESIHh’P (3)

with the following dimensionless parameters

— 2 yoY y=Y p.PdU _P_
z d,Re’ Y d, v U ke n’ P= pU’ ’
E=Ezd,,Re’ = 2z,~en,,2v/0 (4)
Y, pU

where d), means the hydraulic diameter (i.e., 4H), U the ref-
erence velocity, and y, the reference electrical potential.
The boundary conditions are applied as

v=0 at v=H4 (5a)
dy’

dv _ _

v 0 at Y=0. (Sb)

The Green’s function formulation with the differential
operator L, which is described in the reference books (see,
e.g., Arfken, 1985), can be used for V(¥r) as follows

I iy
[ at_ay}v -2 Ersinh (1) 6)
Solution of this equation proceeds by standard techniques.
We here consider the Green’s function as a linear com-
bination of the eigenvalues and corresponding eigenfunc-
tions ¢,, established as

G, Y1) =S¢ "6, %)

where ¢ is normalized by pd,’/n, and a convenient rep-
resentation for the eigenvalues 8, = [(2n — 1)nd;/2H]’. Uti-
lization of the Dirac delta function with orthogonal
properties leads to the following expression

LG(Y,Y',0)=8(Y-Y") () (8)

Then, the solution of Eq. (6) subjecting to the above
boundary conditions is given by

V(Y1) = J’dzj "dY'G(Y, Y, 1— t)[ —E@sinh¥(Y" )}

©)

The Green’s function is explicitly found by using the sep-
aration of variables method, yielding

@n-1y’7d?
7! 2
4H n-1 )ﬂdh
e cos Ycos
| 2H

@2n-1)7d;

G= - (10)

S
I M 8

n

The solution for velocity profile yields as

e r)_ dY COSA/_YCOSA/—Y'

V(Yt)——"zlszdt

II“)°°

x[ ZZ ET,sinh ("' )} (11)
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Both integrating and rearranging give the velocity profile
as follows,

2d cos,/B,YY (=1)"dP
V(m - hn 1( ,\/_ dz

" dY'cos,/B,Y" smh’{’}

(Mn

J
-H/d,

dY cos,/B,Y 'sinh ¥
(12)
where V,,., is the velocity profile in the absence of the elec-

trostatic interaction, that equals to the plane Poiseuille flow
profile. Ultimately, the average fluid velocity is obtained as

Virert( Y) -

n

J,H/dh J
(Ve b = —ET ﬁ—l
jH/d" dy 2z lﬂde H 1"21 e

d2°° ldP 4ai

d?
fH/d dY 'cos,/B,Y 'sinh ¥'=—(V),,...+ }’El"l 2 %yzl

H/d,

dY 'cos,/B,Y 'sinh ¥ (13)

'[ —H/d,

2.2, Flow-induced electrokinetic potential (stream-
ing potential)

As derived in Eq. (3), both the local velocity and the
average fluid velocity can be calculated when the nondi-
mensicnal induced electrical field £ is known. Ions from
the double layer region are transported along with the
stream:ing solution, resulting in a streaming current I, in
the direction of flow. The resultant induced electrokinetic
potential, which is generally called the streaming potential
E,, then induces a flow of ions in the opposite direction
known as the electrical conduction current /.. When the
flow reaches a steady state, the summation of the streaming
and conduction current should be zero, so that

Ve l=1+1.=0. (14)

The streaming current /; caused by the pressure-driven
liquid flow is called the electrical convection current. For
a slit-like microchannel with the specified width W, it is
defined by

I,=Wd,U[dYp,V
_ WdiUex’ pa,

7 j_H/dhdY sinh ¥'x
e ¢08,/B,Y ndP
[E‘— 5 (A/,ﬂ_( 1) dZ—EFII wa, dY 'cos /B,Y' smh‘P):(
(15)
The electrical conduction current /, can be expressed as
L= AE.(2HW) = /1,5 ;’;" (2HW) (16)
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where 4, is the total electrical conductivity and 2HW is the
cross-sectional area of the channel. Note that the electrical
conduction current consists of bulk electrical conductivity
and surface electrical conductivity. The bulk conductivity
of the monovalent symmetric electrolyte system (e.g.,
NaCl, KCI solution) is almost much greater than the sur-
face conductivity of the channels made on inorganic or
polymeric materials (Chun et al.,, 2002). In this respect,
the A, in this study can be determined by the value of the
bulk conductivity. Substituting Egs. (15) and (16) into Eq.
(14), the nondimensional induced electrokinetic potential E
is derived as

2R Wy { cos BY_, ndpj ‘
n=1

H I—H/dh ﬁ3/2 dZ
E=

H/d,

2Hy, A, d2UeK’T, .
ZRe + I_H/dhdYsmh ¥x

(2 cosﬂﬁ Yj .47 cos,/B,Y" smh‘I’}

(17)

With defining the dimensionless variable I, = 2z.en,d, U/

AW,, Eq. (17) can be expressed as follows,

2 H/d
diT Re #/4d), dYsinh\’{ cos,/B, Y ndP]
n=1

H2 f—H/dh ﬁs/z

diI I,Re #/d,

I+ 2H? '[—H/dh

dYsinh ¥x

[2 cosﬂﬂnYL dY'cos,/B,Y" smh‘P]

(18)

2.3. Electroviscous effect

As described above, the streaming potential E produces a
liquid flow in the direction opposite to the pressure-driven
flow. The flow rate through the microchannel with and with-
out the consideration of the EDL effects can be considered
from Eq. (13). Then, one may obtain the ratio of the appar-
ent fluid viscosity to the inert bulk viscosity as follows:

_TL <V>mert 1
nmerl <V> = (=1 H/d),
er nz L'B—y%f wa, dY 'cos,/B,Y 'sinh ¥
1-=1—
2 5 1dp
X 5z (19)

where it is easy to show that this ratio is greater than 1.

3. Nonlinear Poisson-Boltzmann electric field

with finite difference scheme

When the charged surface is contact with an electrolyte,
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the electrostatic charge would influence the distribution of
nearby ions so that an electric field is established. The
charges on the solid surface and the balancing charges in
the liquid consist of both the compact double layer referred
to as the Stern layer and the diffuse layer (Hunter, 1981;
Russel ef al., 1989). In order to compute the velocity pro-
file and the electroviscous effect in a charged microchan-
nel, the electric potential y should be evaluated. The
nonlinear P-B equation governing the electric field is given
as

V= i’sinh ¥ (20)

Here, the dimensionless potential ¥ denotes zey/kT and
the inverse Debye length (i.e., inverse EDL thickness) x is
defined by

_[2npze™]”
<[] e

where z; is the valence of type 7 ions, e the elementary
charge, £ the dielectric constant, and &7 the Boltzmann
thermal energy. In Eq. (21), n;, is the concentration of type
i ions in the bulk solution, where n,, (1/m3) equals to a
product of Avogadros number and ionic strength C, (mM).
For low potential of ¥ <1 (i.e., less than kT/e = 25.69 mV)
with 1:1 electrolyte system, the P-B equation may be lin-
earized, that is called the Debye-Hiickel equation. The
application scope of this linearized P-B field is narrow in
real situations, because the surface potentials favorably
have values larger than 25.69 mV.

We constider a slit-like channel confined between parallel
planes of width 2H, then dimensionless nonlinear P-B
equation leads to

2

%—;f = (kd,) sinh ¥ 22)
The following boundary conditions are presented in a half
of the channel cross-section,

at ¥=0 and & (23)

Y=Y, d,

To obtain the solution of Eq. (22) with the boundary con-
ditions, taking five-point central difference method yields
the left-hand side of Eq. (22) as

Qz_‘}’_ %:]1_2%“_},{11]@11
oY (AY)
where k means the iteration index and the grid index

j=12, ... N. The functions on the right-hand side of Eq.
(22) can be linearized as

sinh & = sinh W4+ (W5+ 1 — ) cosh W (25)

Substituting Egs. (24) and (25) into Eq. (22), the finite dif-
ference form of the nonlinear P-B equation becomes as fol-
lows

24

86

'IUJ”(III _2 lP;(+l + l}lj]gj—ll
(4yy’
Then, Eq. (26) is rewritten, like as

= K [sinh P+ (P+ - Pcosh ¥4] (26)

P~ (24 (AY) K cosh ) Wi+ i)
= (AY) ¥’ (sinh Wi — Wreosh W) 27

Eq. (27) can be solved for ¥}+' by successive iterative
calculation, using the value of ¥ obtained in the k-th iter-
ation (Gerald and Wheatley, 1992). A series of algebraic
equations can be expressed as a matrix form, given by

Ax=b (28)
where

P(Y¥%) 1 0 - 0

1 P 1 - :

_ 0 1 :
A= | 0 (29)

: . 1 P(¥) 1
xT= [%4—1’ l{llz(+l’ S l};l_wl’ - qﬂfiltllf %H] (30)
b = [Q(FN) P, Q(F5),, Q(F5),~, Q(FE ), Q(Fh) - ¥,
€2))

In Egs. (29) and (31), the constant potential boundary con-
dition takes the following form

P(¥) = -2-(AY) k*cosh ¥ (32)
O(W) = (AY)’ K’ (sinh Y- Pcosh ) (33)

Once the electric potential profile is obtained, it is straight-
forward to determine the local net charge density as fol-
lows

P = zie(n,—n.) = =2zen; ,sinh ¥ (34)
4. Results and discussion

For illustrative computations, we consider a fully devel-
oped laminar flow of an aqueous NaCl solution through a
slit-like microchannel made on inorganic materials such as
fused silica. The channel width 2H is chosen to be 2 um.
The ionic concentration of 1:1 type electrolyte equals to the
ionic strength of the solution. At room temperature, the
dielectric constant and the viscosity of the fluid are taken
as £=80x(8.854x 10™%) Coul/N-m’ and n=1.0x 107
kg/m-sec, respectively. The bulk conductivity with varia-
tions of ionic concentrations is chosen from the literature
value (Lide, 1999; Chun, 2002). The finite difference grids
of 1000 are built within the channel, and the convergence
criterion is given as 107, All computations performed on
an IBM PC with Pentium IV processor (1.5 GHz) take less
than 1 minute.
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dimensionless potential, ¥
N

. (¢ .
-1.0 -0.8 0.8 1.0
dimensionless channel width, y/H

Fig. 1. Potential profile in a same charged slit-like microchannel
for several solution ionic concentrations (i.e., Debye
length) as well as surface potentials.

4.1. Electric potential and velocity profiles

In the microchannel, the inner surfaces of both the lower
wall and the upper wall have surface potentials of ¥, and
'V, , respectively. It is possible to assume here that the sur-
face potential is identical to the zeta potential. A decrease
of NaCl electrolyte concentration C, corresponds to an
increase of Debye length k™', which provides a measure of
the range of the long-range electrostatic interactions. Since
the double layer thickness k' (nm) equals to [Cy(M)]™"%
3.278 for 1:1 type electrolytes, the ionic strengths of 1.0
and 107 mM correspond to the k' of 9.7 and 305 nm,
respectively.

As shown in Fig. 1, the potential profile moves toward
the cener region as the surface potential increases. Getting
far from the surface of the channel wall, the potential is
decreased and the EDL thickness can be determined. An
increase in the long-range repulsive screened electrostatic
interaction with increasing the surface potential is more
dramatic for lower solution ionic strength. Given the
potenticl profile, the velocity profile can subsequently be
computed by using Eq. (12). In Fig. 2, the EDL does not
exhibit any effects on the flow pattern for the solution ionic
strength of 1.0 mM. However, a dependency of the surface
potential upon the velocity profile can distinctly be seen for
the solution ionic strength of 10 mM.

Fig. 3 shows that the potential profiles are changed
according to the charge condition of the wall surfaces.
When each of the wall surfaces has opposite charge, the
electrostatic attraction is experienced. The charge condi-
tion of the wall surfaces also affects the velocity profile as
given in Fig. 4. As the electrostatic attraction increases, the
maximum velocity in the center of the channel is increased.
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Fig. 2. Velocity profile in a same charged slit-like microchannel
for several solution ionic concentrations (i.e., Debye
length) as well as surface potentials, where C, = 10~ mM
and pressure gradient dp/dz is 1.0x 10° N/m’,

6

T T T T T

¥, =6.0 ¥, =4,

same charged

¥.=4.0
¥ =20

¥, = uncharged

dimensioniess potential, ¥
o

¥, =-2.0 1
4 oppositely charged
¥ =-4.0
_6 L 1 L 1 1 L
-1.0 -0.5 0.0 0.5 1.0

dimensionless channel width, y/H

Fig. 3. Potential profile in both same and oppositely charged slit-
like microchannels for several solution ionic concentra-
tions (i.e., Debye length) as well as surface potentials,
where C,=10" mM.

Once each of the wall surfaces has opposite charge with
equivalent magnitude of the potential, then the velocity
profile becomes the Poiseuille flow.

4.2. Average velocity and electroviscous effect

It points out that the flow situations are verified as a low
Reynolds number condition, which is certainly less than 1.
In Fig. 5, the average fluid velocity <v> is entirely reduced
with the increase in surface potential as well as the
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2-0 LI T T T - T
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= 1.0
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0.0 0.2 0.4 0.6 0.8 1.0

dimensionless channel width, y/H

Fig. 4. Velocity profile in both same and oppositely charged slit-
like microchannels for several solution ionic concentra-
tions (i.e., Debye length) as well as surface potentials,
where C,=10" mM and pressure gradient dp/dz is
1.0 x 10° N/m?’.

3.5 v —— T v T

A
3.0} w, =¥ =10 A
25+ ‘Ps="li”s=2.0 4

20} ¥, =¥,=40 .

average fluid velocity, <v> (10* m/s)

15+ ]
10 _:;:" d
A C, =10°mMm
051 —:C,=10mM | |
0.0 1 A 1 i 1
0.0 25 5.0 75 10.0

pressure gradient, dp/dz (bar/m)

Fig. 5. The variations of average fluid velocity <v> with pressure
gradient at different solution ionic concentrations as well
as surface potentials, where the slit walls have same
charge.

decrease in solution ionic strength. As described before,
the charge concentration difference between the upstream
and the downstream results in an induced electrokinetic
potential, namely streaming potential. Therefore, a larger
pressure gradient will generate a larger volume transport, a
higher charge accumulation as well as a stronger induced
electrical field will occur. The induced electrical field
increases as the ionic concentration of the aqueous solution
for a given pressure gradient decreases, due to a larger

38

3.5 T T T T . T

3.0 r
25 I ¥,=-20

20} ¥ = uncharged 1

15+ \Ps=2'0

1.0+ R

0.5+ 1

average fluid velocity, <v> (10* m/s)

0.0 —
0.0 25 5.0 75

pressure gradient, dp/dz (bar/m)

10.0

Fig. 6. The variations of average fluid velocity <v> with pressure
gradient at different solution ionic concentrations as well
as surface potentials, where the slit walls have both same
and opposite charges and C,= 10" mM.

1.3 T T
:*I/s=‘f’s=40
:‘Ps="i’s=20
(W, =¥ =10
1.2 |
<
£
<
S—
c
11} b
1.0
100 10! 102 10°

dimensionless inverse Debye length, xH

Fig. 7. The electroviscous effect with variations of dimensionless
inverse Debye lengths (x77) and surface potentials, where
the slit walls have same charge.

EDL thickness. This behavior leads us to understand the
electrokinetic effect on the fluid velocity in microchannels.
As shown in Fig. 6, the fluid velocity increases in accor-
dance with increasing of the effect of opposite charge.
This is due to a fact that the opposite charge generates the
opposite streaming current, which would decrease the net
streaming current through the channel, resulting reduction
of the corresponding conduction current.

The electroviscous effect results from the moving ions in
the diftuse layer which drag the surrounding liquid mol-
ecules. Hence, the viscosity enhancement associating a
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1.3 - Ty aas

—e— ¥ =60 ‘T
126 —a— ¥,=4.0 |
—— ¥, =20

—A— Y, = uncharged
=-2.0

) s

N/ Minert

—o— ¥, =-4.0

11k

1.0
1Q° 10! 102 10°

dimensionless inverse Debye length, xH
Fig. 8. The electroviscous effect with variations of dimensionless

inverse Debye lengths (k) and surface potentials, where
the slit walls have both same and opposite charges.

rheological property can be estimated from the ratio of the
fluid viscosity of charged case to that of inert case. In Fig.
7, the electroviscous effect increases with the increases of
the Debye length (i.e., a decrease of the solution ionic
strength) as well as the surface potential. The effect of
charge condition shown in Fig. 8 corresponds to the feature
of velocity profile provided in Fig. 4. It is evident that the
electroviscous effect becomes weakened for the case of
oppositely charged wall. A reduction of the conduction
current due to the opposite charge gives rise to a decrease
in the electroviscous effect.

5. Conclusions

Recently, a microchannel analysis of the requisite
microfluidic problems has been usefully confronted. The
main thrust of the present study is an analysis on the elec-
trokinetic flow of ionic fluids in slit-like microchannels.
The additional body force originated from the presence of
the nonlinear P-B electric field and the flow-induced elec-
trical field was considered in the equation of motion.
Applying the Green’s function formula could derive the
expressions in explicit forms for the velocity profile, the
inducec electrokinetic potential, and the electroviscous
effect as functions of relevant parameters.

Theoretical results emphasize that the velocity profile is
clearly affected by the EDL for the cases of low ionic con-
centrations and high zeta potentials, where the average
fluid velocity decreases as the solution ionic concentration
decreases. Since both the EDL and the induced electro-
kinetic »otential act against the liquid flow, they result in a
reduced flow rate and this behavior is directly related to the
electroviscous effect. We also examined the influence of
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the surface charge condition upon both the potential and
the velocity profiles. Compared to the case of same
charge, the channel walls of opposite charge display an
opposite behavior on the average fluid velocity as well as
the electroviscous effect.
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Nomenclature
C, : solution ionic strength [M]
d, : hydraulic diameter [m]
E : dimensionless induced electrokinetic poten-

tial, or streaming potential [-]
E, : dimensional E [V/m]
e : elementary charge [Coul]
F : body force [N/m’]
H - half channel width [m]
1 : net electrical current [A]
I : electrical conduction current [A]
I : electrical convection current [A]

kT : Boltzmann thermal energy [J]
N : concentration of charged ions [1/m’]
P : dimensionless hydraulic pressure [—]
p : hydraulic pressure [N/m’]
Re : Reynolds number [—]
t : dimensionless time [—]
U : reference velocity [m/s]
Vv : dimensionless fluid velocity [—]
<V> : dimensionless average fluid velocity [-]
14 : fluid velocity component [m/s]
w : specified width [m]
Y : non-dimensional lateral (y-) coordinate [—]
Z : non-dimensional axial (z-) coordinate [—]
Z : valence of ion [-]
Greek Letters
B. s set of eigenvalues [-]
£ : dielectric constant [Coul® /J - m]
o, : set of eigenfunctions [—]
K : inverse Debye length, or inverse EDL thick-
ness [1/m]
P : fluid density [kg/m’]
2. :net charge density [Coul/m’]
n : fluid viscosity [kg/m - s]
Ninert : fluid viscosity of inert case [kg/m - s]
I, I, : non-dimensional parameters [—]
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: total electrical conductivity [1/Q - m]

: dimensionless electrostatic potential [—]

: dimensionless electrostatic surface potential
(-]

: dimensionless electrostatic surface potential
of opposing wall [—]

v, : reference electrical potential [V]

e

:E)

Mathematical

: finite difference matrix [—]
: finite difference vector [~]
: Green’s function [—]

: differential operator []

: solution vector [—]

: Dirac delta function [—]

SR NQ S
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