• Title/Summary/Keyword: fluid element

Search Result 1,236, Processing Time 0.033 seconds

Analysis of Split Magnetic Fluid Plane Sealing Performance

  • Zhang, Hui-tao;Li, De-cai
    • Journal of Magnetics
    • /
    • v.22 no.1
    • /
    • pp.133-140
    • /
    • 2017
  • Split magnetic fluid sealing is a combination of magnetic fluid rotary and plane sealing. Using the theory of equivalent magnetic circuit design as basis, the author theorized the pressure resistance performance of magnetic fluid plane sealing. To determine the pressure resistance of magnetic fluid plane sealing, the author adopted the method of finite element analysis to calculate the magnetic field intensity in the gap between plane sealing structures. The author also analyzed the effect of different sealing gaps, as well as different ratios between the sealing gap and tooth and solt width, on the sealing performance of split magnetic fluid. Results showed that the wider the sealing gap, the lower the sealing performance. Tooth width strongly affects sealing performance; the sealing performance is best when the ratio between tooth width and sealing gap is 2, whereas the sealing performance is poor when the ratio is over 8. The sealing performance is best when the ratio between the solt width and sealing gap is 4, indicating a slight effect on sealing performance when the ratio between the solt width and sealing gap is higher. Theoretical analysis and simulation results provide reference for the performance evaluation of different sealing equipment and estimation of critical pressure at interface failure.

Efficient Super-element Structural Vibration Analyses of a Large Wind-turbine Rotor Blade Considering Rotational and Aerodynamic Load Effects (회전 및 풍하중 가진 효과를 고려한 대형 풍력발전 로터의 효율적인 슈퍼요소 구조진동해석)

  • Kim, Dong-Man;Kim, Dong-Hyun;Park, Kang-Kyun;Kim, Yu-Sung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.7
    • /
    • pp.651-658
    • /
    • 2009
  • In this study, computer applied engineering(CAE) techniques are fully used to efficiently conduct structural and dynamic analyses of a huge composite rotor blade using super-element. Computational fluid dynamics(CFD) is used to predict aerodynamic loads of the rotating wind-turbine blade. Structural vibration analysis is conducted based on the non-linear finite element method for composite laminates and multi-body dynamic simulation tools. Various numerical results are presented for comparison and the structural dynamic behaviors of the rotor blade are investigated herein.

Multi-Body Dynamic Response Analysis of a MW-Class Wind Turbine System Considering Rotating and Flexibility (로터 회전 및 타워의 탄성력을 고려한 MW 급 풍력발전기의 비선형 다물체 동적 응답 해석)

  • Kim, Dong-Man;Kim, Dong-Hyun;Kim, Yo-Han;Kim, Su-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.78-83
    • /
    • 2009
  • In this study, computer applied engineering (CAE) techniques are fully used to conduct structural and dynamic analyses of a whole huge wind turbine system including composite blades, tower and nacelle. For this study, computational fluid dynamics (CFD) is used to predict aerodynamic loads of the rotating wind-turbine blade model. Multi-body dynamic structural analyses are conducted based on the non-linear finite element method (FEM) by using super-element method for composite laminates blade. Three-dimensional finite element model of a wind turbine system is constructed including power train(main shaft, gear box, coupling, generator), bedplate and tower. The results for multi-body dynamic simulations on the wind turbine's critical operating conditions are presented in detail.

  • PDF

Analysis of the Axisymmetric Hydro-Mechanical Deep Drawing Process by Using the Finite Element Method (유한 요소법을 이용한 축대칭 하이드로 미케니칼 디프 드로잉 공정의 해석)

  • 양동열;김한경;이항수;김경웅
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.5
    • /
    • pp.873-882
    • /
    • 1992
  • The study is concerned with the rigid-plastic element analysis for axisymmetric hydromechanical deep drawing in which the fluid flow influences the metal deformation. Due to the fluid pressure acting on the sheet material hydromechanical deep drawing is distinguished from the conventional deep drawing processes. In considering the pressure effect, the governing equation for fluid pressure is solved and the result is reflected on the global stiffness matrix. The solution procedure consists of two stages ; i.e., initial bulging of the sheet surface before the initiation of steady fluid flow in the flange and fluid-lubricated stage. The problem is decoupled between fluid analysis and analysis of solid deformation by deformation by iterative feedback of mutual computed results. The corresponding experiments are carried out for axisymmetric hydro-mechanical deep drawing of annealled aluminium sheet as well as for deep drawing. It has been shown from the experiments that the limit drawing ratio for hydro-mechanical deep drawing is improved as compared with deep drawing. The computed results are in good agreement with the experiment for variation of punch head and chamber pressure with respect to the punch travel and for distribution of thicknees strain. It is thus shown that the present method of analysis can be effectively applied to the analysis of axisymmetric hydro-mechanical deep drawing processes.

Earthquake Response Characteristics of a Port Structure According to Exciting Frequency Components of Earthquakes (가진 주파수성분에 따른 항만구조물의 지진응답특성에 관한 연구)

  • Kim Doo Kie;Ryu Hee Ryong;Seo Hyeong Yeol;Chang Seong Kyu
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.17 no.1
    • /
    • pp.41-46
    • /
    • 2005
  • The seismic response characteristics of a port structure were investigated by the earthquake analyses of the structure subjected to high-, low-frequency component, and Uljin earthquakes. In the Fluid-Structure-Soil Interaction(FSSI) analysis, the fluid is modeled by the 4-node quadrilateral element which is a modification of a structural plane element, and the port structure and foundation is modelled by the plane strain element. Since the present method directly models the fluid-structure-soil interaction system using finite element method, it can be easily applied to the dynamic analysis of a 2-D fluid-port-soil system with complex geometry. The results of the seismic coefficient. added mass, and FSSI methods are compared. The results showed that the earthquake with high frequency components more affects the seismic response of the structure than that of low frequency components.

A Study on the Vibration of Characteristics of 3-Dimension Submerged Vehicle in Consideration of Fluid-Structure Interaction (유체력을 고려한 3차원 수중압력선체의 진동특성에 관한 연구)

  • 손충렬;황인하;이강수
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.04a
    • /
    • pp.81-88
    • /
    • 2000
  • Unlike structures in the air, the vibration analysis of a submerged or floating structure such as offshore structures or ships is possible only when the fluid-structure interaction is understood, as the whole or part of the structure is in contact with water. Specially, the importance of the added mass is not necessary to say like the submerged vehicle, all of the hull body, is positioned in the water. This paper introduce two method to find natural frequency in consideration of fluid-structure modal coupled vibration analysis. The purpose of this study is to analyze of the vibration characteristic of submerged vehicle to obtain the anti-vibration design data, which could be used in the preliminary design stage data. Underwater pressure hull of submerged vehicle is used as the model of this study. The F.E.M model is meshed by shell and beam element. Also, considering of the inner hull weight, mass element is distributed in the direction of hull length. Numerical calculations are accomplished using the commercial B.E.M code. The characteristics of natural frequency(eigenvalues), mode shape(eigenvectors) and frequency-displacement response are analyzed. The results of this study will be used as the useful design data in preliminary anti-vibration design stage.

  • PDF

Finite Element Modeling of a Piezoelectric Sensor Embedded in a Fluid-loaded Plate (유체와 접한 판재에 박힌 압전센서의 유한요소 모델링)

  • Kim, Jae-Hwan
    • Journal of KSNVE
    • /
    • v.6 no.1
    • /
    • pp.65-70
    • /
    • 1996
  • The sensor response of a piezoelectric transducer embedded in a fluid loaded structure is modeled using a hybrid numerical approach. The structure is excited by an obliquely incident acoustic wave. Finite element modeling in the structure and fluid surrounding the transducer region, is used and a plane wave representation is exploited to match the displacement field at the mathematical boundary. On this boundary, continuity of field derivatives is enforced by using a penalty factor and to further achieve transparency at the mathematical boundary, drilling degrees of freedom (d.o.f.) are introduced to ensure continuity of all derivatives. Numerical results are presented for the sensor response and it is found that the sensor at that location is not only non-intrusive but also sensitive to the characteristic of the structure.

  • PDF

Flow and Scour Analysis Around Monopole of Fixed Offshore Platform Using Method that Couples Computational Fluid Dynamics and Discrete Element Method (CFD-DEM 연계기법을 활용한 고정식 해양구조물의 모노파일 주위 유동 및 세굴해석)

  • Song, Seongjin;Jeon, Wooyoung;Park, Sunho
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.3
    • /
    • pp.245-251
    • /
    • 2019
  • When an offshore foundation is exposed to waves and currents, local scour could develop around a pile and even lead to structural failure. Therefore, understanding and predicting the scour due to sediment transport around foundations are important in the engineering design. In this study, the flow and scour around a monopole foundation exposed to a current were investigated using a method that coupled the computational fluid dynamics (CFD) and discrete element method (DEM). The open source computation fluid dynamics library OpenFOAM and a sediment transport library were coupled in the OpenFOAM platform. The incipient motion of the particle was validated. The flow fields and sediment transport around the monopole were simulated. The scour depth development was simulated and compared with existing experimental data. For the upstream scour hole, the equilibrium scour depth could be reproduced qualitatively, and it was underestimated by about 23%.

Static Aeroelastic analysis of Morphing flap wign through FSI analysis method (FSI를 이용한 모핑 플랩 날개의 정적 공탄성 해석)

  • Kim, Jonghwan;Ko, Seughee;Bae, Jaesung;Hwang, Jaihyuk
    • Journal of Aerospace System Engineering
    • /
    • v.6 no.4
    • /
    • pp.1-6
    • /
    • 2012
  • The morphing flap wing has different structure unliked general wing structure. The actuated chord length of the morphing flap was more longer than conventional wing flap. In this reason, morphing flap wing structure was important to bending moment by aerodynamic lift force. In this study, through the fluid-structure interaction using computational fluid dynamics and structure finite element analysis to apply that the morphing flap wing's static aeroelastic stability analysis.

A Study on Vibration Characteristics in Water Tank Structure (접수탱크구조의 진동특성에 관한 연구)

  • 배성용
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.40 no.4
    • /
    • pp.46-52
    • /
    • 2003
  • In ship structures, many parts are in contact with inner or outer fluid as stern, ballast and oil tanks. Fatigue damages can be sometimes observed in these tanks which seem to be caused by resonance. Tank structures in ships are in contact with water and the vibration characteristics are strongly affected by the added mass of containing water. Therefore it is important to predict vibration characteristics of tank structures. In order to estimate the vibration characteristics, the fluid-structure interaction problem has to be solved precisely. In the present paper, we have developed a numerical tool of vibration analysis of 3-dimensional tank structures using finite elements for plates and boundary elements for water region. To verify the present analysis, we have made an experiment for vibration characteristics of a tank with elastic opposite panels. And the added mass effect of containing water and the effect of structural constraint between panels are investigated numerically and discussed.