• Title/Summary/Keyword: fluid damper

Search Result 312, Processing Time 0.022 seconds

Semi-active vibration control using an MR damper (MR 댐퍼를 이용한 반능동식 진동 제어)

  • Jeon, Do-Yeong;Park, Chan-Ho;Yu, Jeong-Yeol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.1
    • /
    • pp.26-31
    • /
    • 1998
  • For the semiactive vibration control, a variable damper and proper control systems are essential. In this research, a controllable damper was designed using the MR fluids and its mechanical properties such as damping constant and response time were measured. Since the response time of the MR damper was much longer than nominal MR fluid response time, the time delay of the damper should be considered in the design of controllers. It is shown that the advanced On/Off vibration control which includes the damper time delay performs more effectively than the conventional one.

  • PDF

Vibration control of mechanical systems using semi-active MR-damper

  • Maiti, Dipak K.;Shyju, P.P.;Vijayaraju, K.
    • Smart Structures and Systems
    • /
    • v.2 no.1
    • /
    • pp.61-80
    • /
    • 2006
  • The concept of structural vibration control is to absorb vibration energy of the structure by introducing auxiliary devices. Various types of structural vibration control theories and devices have been recently developed and introduced into mechanical systems. One of such devices is damper employing controllable fluids such as ElectroRheological (ER) or MagnetoRheological (MR) fluids. MagnetoRheological (MR) materials are suspensions of fine magnetizable ferromagnetic particles in a non-magnetic medium exhibiting controllable rheological behaviour in the presence of an applied magnetic field. This paper presents the modelling of an MRfluid damper. The damper model is developed based on Newtonian shear flow and Bingham plastic shear flow models. The geometric parameters are varied to get the optimised damper characteristics. The numerical analysis is carried out to estimate the damping coefficient and damping force. The analytical results are compared with the experimental results. The results confirm that MR damper is one of the most promising new semi-active devices for structural vibration control.

Numerical Analysis on the Development of Shut off Damper for a Tsunami at a Nuclear Plant (원자력 발전소의 해일 차단용 댐퍼 개발을 위한 수치해석)

  • Park, Joo-Young;Yi, Chung-Seob;Chin, Do-Hun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.5
    • /
    • pp.471-477
    • /
    • 2014
  • The purpose of this study was to predict the load effect on a damper installed at a nuclear power plant building after a tsunami using a volume of fluid (VOF) numerical analysis method. The wave height was determined by a sine wave function and the tsunami condition was estimated by the wave length. Also, using computational fluid dynamics (CFD), the maximum damper load was set as a boundary condition for the structural analysis that verified how stress and deformation affect the damper. As a result, such simulations estimated the highest stress distribution for a wave length of 350 m with a maximum stress present at the cross point of stiffness installed at the rear end of the damper. The total deformation was approximately 32 mm at the center of damper.

A Study on the Design of Valve Mode MR Damper using Permanent Magnet (영구자석을 이용한 밸브모드 MR 감쇠기 설계에 관한 연구)

  • Kim, Jung-Hoon;Oh, Jun-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.10
    • /
    • pp.69-76
    • /
    • 2000
  • Lots of semi-active control devices have been developed in recent years because they have the best features of passive and active system. Especially, controllable magneto-rheological(MR) fluid devices have received significant attention in these area of research. The MR fluid is the material that reversibly changes from a free-flowing, linear viscous fluid to a semisolid with a controllable yield strength in milliseconds when exposed to a magnetic field. If the magnetic field is induced by moving a permanent magnet instead of applying current to a solenoid, it is possible to design a MR damper consuming low power because the power consumption is reduced at steady state. This paper proposes valve mode MR damper using permanent magnetic circuit that has wide range of operation with low power consumption, a design parameter is adopted. The magnetic circuit, material of choke and choke type are selected experimentally with the design parameter. The behaviors of the damper are examined and torque tracking control using PID feedback controller is performed for step, ramp and sinusoidal trajectiories.

  • PDF

MR fluid damper-based smart damping systems for long steel stay cable under wind load

  • Jung, Hyung-Jo;Jang, Ji-Eun;Choi, Kang-Min;Lee, Heon-Jae
    • Smart Structures and Systems
    • /
    • v.4 no.5
    • /
    • pp.697-710
    • /
    • 2008
  • Long steel stay cables, which are mainly used in cable-stayed bridges, are easy to vibrate because of their low inherent damping characteristics. A lot of methods for vibration reduction of stay cables have been developed, and several techniques of them have been implemented to real structures, though each has its limitations. Recently, it was reported that smart (i.e. semi-active) dampers can potentially achieve performance levels nearly the same as comparable active devices with few of the detractions. Some numerical and experimental studies on the application of smart damping systems employing an MR fluid damper, which is one of the most promising smart dampers, to a stay cable were carried out; however, most of the previous studies considered only one specific control algorithm in which they are interested. In this study, the performance verification of MR fluid damper-based smart damping systems for mitigating vibration of stay cables by considering the four commonly used semi-active control algorithms, such as the control algorithm based on Lyapunov stability theory, the maximum energy dissipation algorithm, the modulated homogeneous friction algorithm and the clipped-optimal control algorithm, is systematically carried out to find the most appropriate control strategy for the cable-damper system.

Design and Performance Evaluation of MR Damper for the Reducing Vibration of a Flexible Pipe Conveying Fluid (유체유동에 의한 유연한 파이프의 진동 저감을 위한 파이프 지지용 MR댐퍼의 설계 및 성능 평가)

  • Park, Woo-Cheul;Lee, Hyun-Chang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.5
    • /
    • pp.2100-2105
    • /
    • 2013
  • This paper presents design and performance evaluation of MR damper for the reducing vibration of a flexible pipe conveying fluid. A novel type of MR damper which is suitable for pipe vibration characteristics is proposed and the MR damper is mathematically modeled and its damping force characteristics are evaluated. The vibration control performance of the MR damper associated with The cantilever pipe system is evaluated.

Performance Evaluation on an MR Damper Featuring Bypass Hole for Passenger Vehicle (바이패스홀을 특징으로 하는 승용차용 MR 댐퍼의 성능 평가)

  • Oh, Jong-Seok;Shin, Do-Kyun;Sohn, Jung-Woo;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.998-999
    • /
    • 2014
  • This paper proposes a method for damping force modeling of magnetorheological (MR) damper featuring bypass hole. After describing configuration and of the MR damper, a damping force modeling of the MR damper is derived based on Bingham model of MR fluid. MR damper consists of piston, accumulator, gap, bypass hole and coil. Damping force is consists of spring force induced by accumulator, viscous force induced at gap and bypass hole, and controllable force induced at gap.

  • PDF

A Study on the Development of a Hydraulic Damper using Semi-Active Viscous Damping (반능동 점성감쇠를 이용한 유체댐퍼 개발에 관한 연구)

  • 전종균;김현식
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.1 no.2
    • /
    • pp.15-20
    • /
    • 2000
  • In this paper, hydraulic damper was studied to solve vibration problems of bridge, structures and several mechanic parts rising magnetic fluid. The damper was modeled using Magneto Rheological fluid and MR damper was manufactured on the basis of design drawing. To investigate the efficacy of magneto rheological phenomenon. experiments were performed on the several design parameters using Universal Testing Machine(UTM). Damping efficacy were examined by frequencies. displacement and electric currents through experiments.

  • PDF

Semiactive Neuro-control for Seismically Excited Structure Considering Dynamics of MR Damper (지진하중을 받는 구조물의 MR 유체 감쇠기를 이용한 반능동 신경망제어)

  • 이헌재;정형조;오주원;이인원
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.403-410
    • /
    • 2003
  • A new semiactive control strategy for seismic response reduction using a neuro-controller and a magnetorheological (MR) fluid damper is proposed. The proposed control system adopts a clipped algorithm which induces the MR damper to generate approximately the desired force. The improved neuro - controller, which was developed by employing the training algorithm based on a cost function and the sensitivity evaluation algorithm replacing an emulator neural network, produces the desired active control force, and then by using the clipped algorithm the appropriate command voltage is selected in order to cause the MR damper to generate the desired control force. The simulation results show that the proposed semiactive neuro-control algorithm is quite effective to reduce seismic responses. In addition, the semi-active control system using MR fluid dampers has many attractive features, such as the bounded-input, bounded-output stability and small energy requirements. The results of this investigation, therefore, indicate that the proposed semi-active neuro-control strategy using MR fluid dampers could be effectively used for control of seismically excited structures.

  • PDF

Semiactive Neuro-control for Seismically Excited Structure considering Dynamics of MR Damper (자기유변유체감쇠기의 동특성을 고려한 지진하중을 받는 구조물의 반능동 신경망제어)

  • 이헌재;정형조;오주원;이인원
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.473-480
    • /
    • 2003
  • A new semiactive control strategy for seismic response reduction using a neuro-controller and a magnetorheological (MR) fluid damper is proposed. The proposed control system adopts a clipped algorithm which induces the MR damper to generate approximately the desired force. The improved neuro-controller, which was developed by employing the training algorithm based on a cost function and the sensitivity evaluation algorithm replacing an emulator neural network, produces the desired active control force, and then by using the clipped algorithm the appropriate command voltage is selected in order to cause the MR damper to generate the desired control force. The simulation results show that the proposed semiactive neuro-control algorithm is quite effective to reduce seismic responses. In addition, the semiactive control system using MR fluid dampers has many attractive features, such as bounded-input, bounded-output stability and small energy requirements. The results of this investigation, therefore, indicate that the proposed semiactive neuro-control strategy using MR fluid dampers could be effective used for control seismically excited structures.

  • PDF