• 제목/요약/키워드: fluid damper

검색결과 312건 처리시간 0.024초

고성능 MR댐퍼의 설계 (High-performance Magneto-rheological Damper Design)

  • 이종석;백운경
    • 한국소음진동공학회논문집
    • /
    • 제14권6호
    • /
    • pp.470-477
    • /
    • 2004
  • This study shows the design process of a MR damper for semi-active suspension systems. Damping force characteristics of the designed damper was predicted through the flow analysis and magnetic analysis. The predicted results were compared with the experimental results and the initial design specification was modified according to the results.

점탄성 감쇠기의 간극 변화에 따른 동특성에 대한 실험적 연구 (Experimental research of dynamic behaviors at viscoelastic damper with change of orifice)

  • 윤종민;임상혁;박화용;김창열;이재응
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 춘계학술대회 논문집
    • /
    • pp.744-749
    • /
    • 2011
  • Silicon oil in viscous fluid damper has a viscoelastic feature that show stiffness besides damping. These properties depend on frequency and are non-linear. A lot of research has been conducted in order to identify viscoelastic damper with mathematical model. Fractional Derivative Maxwell Model has been widely used, but this model did not explain the effect of damper size change on the damper performance. In this paper, the experimental study was conducted to validate damper's dynamic behaviors when total damper's size is changed while maintaining same aspect ratio and orifice size.

  • PDF

ER 댐퍼의 이력현상을 고려한 댐핑력 특성 고찰 (Damping Force Characteristics of ER Damper Considering Hysteresis)

  • 홍성룡;송현정;한상수;최승복
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.489-494
    • /
    • 2002
  • This paper presents hydraulic model which can capture the hysteric damping force behavior of ER damper. A flow mode rue ER damper is manufactured, and its field-dependent damping forces are measured. Newly proposed hydraulic model which derived from physical hydro-mechanical parameters of ER damper are conventional Bingham model are investigated to represent the field-dependent damping force characteristics of ER damper. After principal parameters of two models are estimated from the measured damping forces data, the force vs velocity hysteresis cycles are then reconstructed. The results show that the proposed hydraulic model can capture the hysteresis behavior of ER damper accurately.

  • PDF

고주파 유압시스템에서 감치장치와 축압기에 의한 맥동 충격파 감쇄특성에 대한 연구 (Research for the Pulsating Pressure Characteristics by a Damper and an Accumulator in the High Frequency Hydraulic System)

  • 김양수;김재수;노형운
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2004년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.641-647
    • /
    • 2004
  • Characteristics of the high frequency pulsatile flow have been investigated experimentally to understand the flow phenomena in the hydraulic system. The accumulator in high frequency hydraulic system but that is not effective all frequency zone. Therefore, a hydraulic damper used with accumulator is suggested to reduce the high frequency pulsatile where the accumulator is not effective. The pulsating pressure obtained by Pressure measurement system are analyzed to power spectral density distribution. According to the variations of pump input pressure and actuator acceleration frequency, the pressure is measured with or without an accumulator or pulsatile damper The amplitude of pressure with damper is very lower than those without accumulator or damper due to absorbing function of damper. As the frequency of actuator acceleration is increased, the effect of damper becomes very important to decrease the amplitude of pulsatile Pressure waveform with high frequencies.

  • PDF

조향계 유압 시미댐퍼의 성능해석 프로그램 개발 (Development of Performance Analysis Program for a Hydraulic Shimmy Damper of Steering System)

  • 이재천;정용승;김진홍
    • 한국자동차공학회논문집
    • /
    • 제12권1호
    • /
    • pp.174-183
    • /
    • 2004
  • A program to analyze the performance characteristics of a hydraulic shimmy damper for automotive steering system was developed in this study. Dimensionless mathematical equations of the dynamics of shimmy damper for forward and reverse fluid flows were derived respectively and incorporated into the Simulink models. The program was validated by comparing the results of simulation and experiments for various frequencies of upstream ripple pressures into the damper. Low-pass filter characteristics of the shimmy damper at reverse flow was demonstrated which means that the shimmy damper could alleviate the high speed ripple pressures induced by the unbalance oscillation of tire in vehicle driving. The parameter sensitivity analysis was also conducted to identify the dominant parameters for the damper performance.

유전알고리즘을 이용한 차량용 댐퍼의 최적설계에 관한 연구 (A Study on the Optimization Design of Automotive Damper Using Genetic Algorithm)

  • 이춘태
    • 동력기계공학회지
    • /
    • 제22권6호
    • /
    • pp.80-86
    • /
    • 2018
  • A damper is a hydraulic device designed to absorb or eliminate shock impulses which is acting on the sprung mass of car body. It converts the kinetic energy of the shock into another form of energy, typically heat. The main mechanism for providing damping is by shearing the hydraulic fluid as it flows through restrictions. Since the damping mechanism depends on the flow restrictions, these restrictions are very important in damper design. Damper engineers often try several combinations of valve shims, piston orifices and bleed orifices before finding the best combination for a particular setup on a car. Therefore, the ability to tune a damper properly without testing is of great interest in damper design. For this reason, many previous researches have been done on modeling and simulation of the damper. This paper explains a genetic algorithm method to find the optimal parameters for the design objective and the simulation results agree well with the targeted damping characteristics.

Numerical simulation of tuned liquid tank- structure systems through σ-transformation based fluid-structure coupled solver

  • Eswaran, M.;Reddy, G.R.
    • Wind and Structures
    • /
    • 제23권5호
    • /
    • pp.421-447
    • /
    • 2016
  • Wind-induced and earthquake-induced excitations on tall structures can be effectively controlled by Tuned Liquid Damper (TLD). This work presents a numerical simulation procedure to study the performance of tuned liquid tank- structure system through ${\sigma}$-transformation based fluid-structure coupled solver. For this, a 'C' based computational code is developed. Structural equations are coupled with fluid equations in order to achieve the transfer of sloshing forces to structure for damping. Structural equations are solved by fourth order Runge-Kutta method while fluid equations are solved using finite difference based sigma transformed algorithm. Code is validated with previously published results. The minimum displacement of structure is observed when the resonance condition of the coupled system is satisfied through proper tuning of TLD. Since real-time excitations are random in nature, the performance study of TLD under random excitation is also carried out in which the Bretschneider spectrum is used to generate the random input wave.

MR 댐퍼의 동특성 해석 (Dynamic Characteristics Analysis of A Magneto-Rheological Damper)

  • Jeong, Hee-Kyung;Baek, Woon-Kyung
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문초록집
    • /
    • pp.328.1-328
    • /
    • 2002
  • MR(Magneto-rheological) fluid is smart fluid that can change its characteristics when magnetic fields are applied. Recently, many researches are going on this MR fluid for the application in a variety of areas including automobile shock absorbers. This paper describes the design procedure of a MR damper and the analysis results of its dynamic characteristics. MR fluid in the magnetic field shows initial yield shear stress and increasing resistive viscousity with final saturation thereafter. (omitted)

  • PDF

절단 원추형 전기점성 SFD 베어링 연구 (A Study on the Electroviscous(EV) Fluid Squeeze Film Damper(SFD) Bearing of the Truncated Cone Type)

  • 윤석철
    • 한국안전학회지
    • /
    • 제18권3호
    • /
    • pp.8-13
    • /
    • 2003
  • Equivalent Reynolds equation of truncated cone type SFD bearing using nonnewtonian EV fluid is derived. The 3 nondimensional oil film pressures and its forces are obtained with axial and circumferential pressure gradient of bearing respectively, and dynamic characteristics for the stability of rotor-bearing system are obtaind through the governing equation for an elastic rotational shaft. It is shown that EV fluid is less sensitive to the changes of oil-film than newtonian fluids for dynamic characteristics. Therefore, results show that it is better to use an EV fluid with truncated cone type SFD bearing for the vibration control of rotational machines.

반능동 제어를 위한 MR 유체 댐퍼의 설계 (Design of MR Fulid Dampers for Semi-Active Control)

  • 구자인
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2000년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall 2000
    • /
    • pp.496-500
    • /
    • 2000
  • 대형 구조물의 진동제어를 위하여 MR 유체 댐퍼를 사용한 반능동 제어기법에 대하여 연구하였다. 기존에 많이 사용되고 있는 수동제어기법은 일단 제어장치를 설치한 후에는 구조물에 실제로 작용하고 있는 외부 하중의 현재 특성에 대해서 적절히 반응할 수 없다는 제한을 가지고 있으며, 이를 극복하기 위하여 연구되어온 능동제어기법은 구조물이 진동을 감소시키기 위하여 구조물에 직접적으로 가해지는 커다란 제어력을 요구하며, 이로 인해 경우에 따라서는 불안정한 상태가 유발될 수도 있다는 점이 단점으로 지적되고 있다. 최근에 Spencer 등은 반능동 제어기법을 제안하였는데, 이는 수동제어장치의 제어특성을 On-Line 으로 조절하는 방식으로서 제어 가능한 수동제어기법으로도 불리운다. 구조물의 진동제어에 필요한 제어력이, 특수한 제어기구에서 발생되는 인위적인 힘이 아니라, 적절한 구조부재에서 발생되는 자연적인 부재력이므로, 무엇보다 강인하고 신뢰할 수 있는 제어기법이며, 이때 제어장치의 구조적 특성을, 측정된 구조물의 응답에 맞추어 적절히 조절함으로써 다양한 외부하중에 대해 보다 효율적인 제어가 이루어질 수 있도록 한 방법이다. 반능동제어를 위한 제어기로서는 Variable Orifice Dampers, Friction Controllable Isolators, Variable Stiffness Devices, Electro-Rheological (ER) Fluid Damper, Magneto-Rheological(MR) Fluid Damper등이 제안되고 있으며, 본 논문에서는 반응속도가 빠르고, 적은 파워만을 요구하며, 커다란 제어력을 낼 수 있는 MR Damper를 사용하여 지진하중을 받는 구조물의 반능동 제어게 대하여 연구하였다. MR Damper의 특성이 비선형이므로 이에 적합한 Sliding Mode Fuzzy Control(SMFC)기법을 사용하였으며 이때 SMFC 의 최적 설계를 위하여 Genetic Algorithm을 적용하였다. 제안된 제어기법의 실제 적용성을 검증하기 위하여 기존이 제어결과와 비교 검토하였으며, 그 결과로부터 MR Damper를 사용한 반능동 제어기법이 구조물의 진동제어에 매우 효과적임을 확인할 수 있었다.

  • PDF