• Title/Summary/Keyword: fluid and flow

Search Result 7,252, Processing Time 0.039 seconds

A Sink Flow from a Rotating Tank (회전원통으로부터의 싱크 유동)

  • Suh Yong Kweon;Yeo Chang Ho
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.36-39
    • /
    • 2004
  • In this study, we present the theoretical, numerical and experimental results of the sink flow from a rotating, circular tank Strikingly enough, when the upper free surface was set with no-slip boundary conditions, the Ekman boundary-layer develops not only above the bottom surface but under the free surface. The sink fluid is coming from the two Ekman layers, and the mass transfer from the bulk, inviscid region is dependent on the rotational speed. It is also remarkable to see that all the fluid gathered along the axis flows through a rapidly rotating fluid column with almost the same size as the hole.

  • PDF

A Study on the Transfer of Molten Drop in MIG Welding (MIG 용접에서 용융 드롭의 이행에 관한 연구)

  • 박기영;이세헌;엄기원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.538-541
    • /
    • 1996
  • The flow of the molten drop in the GMAW was observed to explain the mechanism of its formation and break-up process. Fluid flew analysis was made with the assumption that the electrode wire acts like fluid, and it is shown how the convection of the drop inside affects its flow, from the formation to the break-up of the drop. In later part, the process of the spray mode development at high current is shown, as well as the one of the globular mode, by the fluid flow analysis.

  • PDF

A Numerical Analysis on Flows Around a Moving Body Using a Mesh Transformation Method (격자변환기법을 이용한 이동물체 주위의 유동해석)

  • Kim, Tae-Gyun;Heo, Nam-Geon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.4
    • /
    • pp.593-599
    • /
    • 2001
  • A flow analysis is performed in the present study for the moving body problem by proposing a mesh transformation method for the movement of the body in the fluid medium. Unlike other moving mesh techniques, a mesh itself is not moving but changes its property as time marches in a mesh transformation method. The flow field results are compared with those by other moving mesh technique, and showed good agreements. The movement of a floatable body in the flow field caused by the moving body is also studied in the present study by using a mesh transformation technique and a fluid/structure interaction method.

An Analytical Investigation on Fluid Dynamics of Filler Neck Check Valve for On-board Refueling Vapor Recovery (주유중 증발가스제어 필러넥 체크밸브의 유동해석)

  • 김성훈;이재천
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.10
    • /
    • pp.105-111
    • /
    • 2003
  • ORVR filler neck check valve, which is one of the essential components of the vapor fuel control system, should diminish the evaporation by maintaining laminar fluid flow on refueling process. This study presents numerical. results of pressure and velocity distributions of the fluid flow in a ORVR filler neck check valve on refueling process. CFD-ACE+ has been employed for numerical analysis based on the information of experimental results of valve position as a function of inlet flow rate. No abrupt pressure change, which may causes vaporization of fuel, has been confirmed to take place on the concave surface of the valve spool. However, it is clear that some possibility exist at the mid-position of surface of valve spool and downstream according to the opening of valve.

Experimental study on Magnetic Flow Characteristics of MR Fluid (MR 유체의 자기유동 특성에 대한 실험연구)

  • Lee, Seok-Hyun;Kim, Ki-Young;Baek, Dae-Sung;Kwon, Young-Chul;Park, Sam-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.8
    • /
    • pp.3611-3616
    • /
    • 2013
  • Physical characteristics of a magneto-rheological(MR) fluid can be influenced by a magnetic field. In the present study, the behaviors of MR fluid are visualized and the shear stresses are measured under the magnetic field for density 1.3, 1.5 and 1.7 $g/cm^3$, and viscosity 100, 1000 and 10000cp. When the magnetic field is applied, particles of MR fluid are arranged along lines of magnetic field. It is observed that the flow pattern of MR fluid under the magnetic field is different from that of MR fluid without the magnetic field. Shear stress of MR fluids under the magnetic field changes significantly. Shear stress by the magnetic field increases the shape of a quadratic equation. When the density changes from $1300kg/m^3$ to $1700kg/m^3$ at 2.0A, the shear stress increases about 33%.

An Experimental Study on Thermal Characteristics between Cooling Fluid and Ice Ball during Charging and Discharging Precesses (빙축 및 냉방열과정중 냉각유체와 Ice Ball사이의 열적 특성에 관한 실험적 연구)

  • 박경원;박이동;황영규;김윤제
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1996.10b
    • /
    • pp.193-205
    • /
    • 1996
  • This paper deals with experimental study on thermal characteristics that a cooling fluid is affected to ice ball as being measuring the temperature in storage tank and ice ball governing the rate of heat storage. Distributor was taken as inlet geometry factor. flow rate of cooling fluid which was a brine were 2, 4, and 6LPM, and 8, 10, and 12$^{\circ}C$ in the temperature difference for dynamic factors with respect to three ice ball types(103, 96, 76mm). In case of in flowing cooling fluid, since inertia force is suppressed by lower flow rate the amount of heat was transferred to ice ball by heat conduction high because density difference is high. And in case of larger ice ball, a long-term storage was available because reaching time at steady state is relatively long. consequently, smaller ice ball could be suitable to a short-term storage.

  • PDF

Fluid Analysis of GGH Panel Elements considering Deposition Particles for Desulfurizing Equipments (침적 입자를 고려한 탈황설비용 GGH 판넬 요소의 유동해석)

  • Ryu, B.J.;Kim, J.H.;Kim, H.S.;Lee, K.S.;Koo, K.W.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.601-605
    • /
    • 2009
  • The paper deals with the proper design of GGH(gas-gas heater) panel elements of desulfurization equipments in a thermoelectric power plant. When fossil fuels such as coal, petroleum et cetera are burnt to ashes, sulfur oxide compounds are produced, and calcareous sludges are deposited at GGH panel elements. In this case, operation of a power plant equipments is interrupted, and a tremendous economic loss comes into existence. One of the purposes of the paper is to find flow velocity distributions and regions of depositions when calcareous sludges pile up on the GGH panel elements through the fluid analysis. In the fluid analysis, flow velocity and position distributions of particles between GGH panel elements are demonstrated according to time variation for ammonia and calcium hydroxide particles.

  • PDF

NUMERICAL METHOD FOR THE TWO-FLUID THREE-FIELD MODEL ON AN UNSTRUCTURED MESH (비정렬격자 2-유체 3-상 유동 해석 기법)

  • Kim, J.;Park, I.K.;Cho, H.K.;Yoon, H.Y.;Jeong, J.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.10a
    • /
    • pp.243-248
    • /
    • 2007
  • A three-dimensional (3D) unstructured hydrodynamic solver for transient two-phase flows has been developed. A two-fluid three-field model was adopted for the two-phase flows. The three fields represent a continuous liquid, an entrained liquid, and a vapour field. The hydrodynamic solver is for the 3D component of a nuclear system code and the component-scale analysis tools for transient two-phase flows. The finite volume method and unstructured grid are adopted, which are useful for the flows in a complicated geometry. The semi-implicit ICE (Implicit Continuous-fluid Eulerian) numerical scheme has been adapted to the unstructured non-staggered grid. This paper presents the numerical method and the preliminary results of the calculations. The results show that the numerical scheme is robust and predicts the phase change and the flow transitions due to boiling and flashing problems well.

  • PDF

Optimization analysis on collection efficiency of vacuum cleaner based on two-fluid and CFD-DEM model

  • Wang, Lian;Chu, Xihua
    • Advances in Computational Design
    • /
    • v.5 no.3
    • /
    • pp.261-276
    • /
    • 2020
  • The reasonable layout of vacuum cleaner can effectively improve the collection efficiency of iron filings generated in the process of steel production. Therefore, in this study, the CFD-DEM coupling model and two-fluid model are used to calculate the iron filings collection efficiency of vacuum cleaner with different inclination/cross-sectional area, pressure drop and inlet angle. The results are as follows: The CFD-DEM coupling method can truly reflect the motion mode of iron filings in pneumatic conveying. Considering the instability and the decline of the growth rate of iron filings collection efficiency caused by high pressure drop, the layout of 75° inclination is suggested, and the optimal pressure drop is 100Pa. The optimal simulation results based on two-fluid model show that when the inlet angle and pressure drop are in the range of 45°~65° and 70Pa~100Pa, larger mass flow rate of iron filings can be obtained. It is hoped that the simulation results can offer some suggestion to the layout of vacuum cleaner in the rolling mill.

Thermo-fluid Dynamic and Missile-motion Performance Analysis of Gas-Steam Launch System Utilizing Multiphase Flow Model and Dynamic Grid System (다상 유동모델과 동적 격자계를 활용한 가스-스팀 발사체계의 열유동과 탄의 운동성능 해석)

  • Kim, Hyun Muk;Bae, Seong Hun;Park, Cheol Hyeon;Jeon, Hyeok Soo;Kim, Jeong Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.2
    • /
    • pp.48-59
    • /
    • 2017
  • In this study, an analysis of the thermo-fluid dynamic and missile-motion performance was carried out through a numerical simulation inside the missile canister. Calculation was made in an analytical volume using dynamic grid and evaporated water was used as a coolant. To analyze the interaction among the hot gas, coolant, and mixture flow, Realizable $k-{\varepsilon}$ turbulence and VOF (Volume Of Fluid) model were chosen and a parametric study was performed with the change of coolant flow rate. As a result of the analysis, pressure of the canister showed a large difference depending on the presence or absence of the coolant, and also showed a dependancy on the amount of coolant. Velocity and acceleration were dependent on the canister pressure.