• Title/Summary/Keyword: fluid and flow

Search Result 7,252, Processing Time 0.038 seconds

The effects of Magnoliae cortex and Zea Mays L. extract mixtures on experimentally induced periodontitis of beagle dog (후박추출물과 옥수수 불검화 추출물 혼합 경구용 제제가 비글견에서 실험적으로 유발된 치주염에 미치는 영향)

  • Kim, Tae-Il;Chung, Chong-Pyoung;Ku, Young
    • Journal of Periodontal and Implant Science
    • /
    • v.32 no.4
    • /
    • pp.847-855
    • /
    • 2002
  • It has been reported that Magnoliae cortex extract has antibacterial and antimicrobial activity against pathogenic microbes and Zea Mays L. extract is effective for improving gingival tissue health. The purpose of this study was to examine the anti-inflammatory and antimicrobial effects of Zea Mays L. and Magnoliac cortex extract mixtures through experimental peridontitis induced beagle dog model. Nine beagle dogs with experimentally induced periodontitis were selected. Baseline clinical indices which includes plaque index, gingival index, probing pocket depth, clinical attachment level, gingival fluid flow rate were recorded and microbial assays were done. Magnoliac cortex and Zea Mays L., mixed at 2:l ratio in 105mg capsular dosage, were taken by 3 capsule (Group I) or 6 capsule dosages (Group II) three times a day. After 4,8,12 weeks, clinical indices were recorded. All data of clinical indices were compared through one-way ANOVA with 95% confidence level. Clinical indices of group I and II showed significantly better results than those of control group. There were no significant differences between group I and II. In conclusion, it was confirmed that mixture of Magnoliae cortex and Zea May L. (mix ratio 2:1) possessed clinical improving effects to periodontitis.

Heating and Cooling System using the Sewage Source Absorption Refrigeration and Heat Pump Cycle (하수열을 이용한 냉난방시스템에 관한 연구)

  • Lee, Yong-Hwa;Shin, Hyun-Joon;Yoon, Hee-Chul;Park, Hyun-Gun
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.4
    • /
    • pp.19-26
    • /
    • 2007
  • This paper concerns the study of absorption refrigeration and heat pump cycle to use sewage. Simulation analysis on the double-effect absorption refrigeration cycle with parallel and two-stage heat pump cycle has been performed. The working fluid is Lithium Bromide and water solution. The absorption refrigeration cycle use sewage as a cooling water for the absorber and condenser, and absorption refrigeration cycle does that as a chilled water for the evaporator of the first stage cycle. And the two-stage cycle consists of coupling double-effect with parallel and single effect cycle so that the first stage absorber and condenser produces heating water to evaporate refrigerant in the evaporator of the second stage. The effects of operating variables such as a absorber temperature on the coefficient of performance have been studied for absorption refrigeration and heat pump cycle.

Numerical hydrodynamic analysis of an offshore stationary-floating oscillating water column-wave energy converter using CFD

  • Elhanafi, Ahmed;Fleming, Alan;Macfarlane, Gregor;Leong, Zhi
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.1
    • /
    • pp.77-99
    • /
    • 2017
  • Offshore oscillating water columns (OWC) represent one of the most promising forms of wave energy converters. The hydrodynamic performance of such converters heavily depends on their interactions with ocean waves; therefore, understanding these interactions is essential. In this paper, a fully nonlinear 2D computational fluid dynamics (CFD) model based on RANS equations and VOF surface capturing scheme is implemented to carry out wave energy balance analyses for an offshore OWC. The numerical model is well validated against published physical measurements including; chamber differential air pressure, chamber water level oscillation and vertical velocity, overall wave energy extraction efficiency, reflected and transmitted waves, velocity and vorticity fields (PIV measurements). Following the successful validation work, an extensive campaign of numerical tests is performed to quantify the relevance of three design parameters, namely incoming wavelength, wave height and turbine damping to the device hydrodynamic performance and wave energy conversion process. All of the three investigated parameters show important effects on the wave-pneumatic energy conversion chain. In addition, the flow field around the chamber's front wall indicates areas of energy losses by stronger vortices generation than the rear wall.

Design, test and numerical simulation of a low-speed horizontal axis hydrokinetic turbine

  • Tian, Wenlong;Mao, Zhaoyong;Ding, Hao
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.6
    • /
    • pp.782-793
    • /
    • 2018
  • A small-scale horizontal axis hydrokinetic turbine is designed, manufactured and studied both experimentally and numerically in this study. The turbine is expected to work in most of China's sea areas where the ocean current velocity is low and to supply electricity for remote islands. To improve the efficiency of the turbine at low flow velocities, a magnetic coupling is used for the non-contacting transmission of the rotor torque. A prototype is manufactured and tested in a towing tank. The experimental results show that the turbine is characterized by a cut-in velocity of 0.25 m/s and a maximum power coefficient of 0.33, proving the feasibility of using magnetic couplings to reduce the resistive torque in the transmission parts. Three dimensional Computational Fluid Dynamics (CFD) simulations, which are based on the Reynolds Averaged Navier-Stokes (RANS) equations, are then performed to evaluate the performance of the rotor both at transient and steady state.

Construction and Testing of a radiation-beam powered TA (ThermoAcoustic) washer for grease removal

  • Chen, Kuan;DaCosta, David H.;Kim, Yeongmin;Oh, Seung Jin;Chun, Wongee
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.1
    • /
    • pp.21-28
    • /
    • 2015
  • A small washer powered directly and solely by thermal radiation was constructed and tested to explore the feasibility of using solar energy or other types of thermal radiation for washing and cleaning. In principle, TA (ThermoAcoustic) washers have the benefits of simpler design and operation and fewer energy conversion processes, thus should be more energy efficient and cost less than electric washing/cleaning systems. The prototype TA converter we constructed could sustain itself with consistent fluid oscillations for more than 20 minutes when powered by either concentrated solar radiation or an IR (infrared) heater. The frequencies of water oscillations in the wash chamber ranged from 2.6 to 3.6 Hz. The overall conversion efficiency was lower than the typical efficiencies of TA engines. Change in water temperature had little effect on the oscillatory flow in the TA washer due to its low efficiency. On the other hand higher water temperatures enhanced grease removal considerably in our tests. Methods for measuring the overall conversion efficiency, frictional loss, and grease removal of the TA washing system we designed were developed and discussed.

Analysis of a Cryogenic Nitrogen-Ambient Air Heat Exchanger Including Frost Formation (착상을 고려한 극저온 질소-대기 열교환기의 해석)

  • 최권일;장호명
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.9
    • /
    • pp.825-834
    • /
    • 2000
  • A heat exchanger analysis is performed to investigate the heating characteristics of cryogenic nitrogen by ambient air for the purpose of cryogenic automotive propulsion. The heat exchanger is a concentric triple-passage for supercritical nitrogen, and the radial fins are attached on the outermost tube for the crossflow of ambient air. The temperature distribution is calculated for the nitrogen along the passage, including the real gas properties of nitrogen, the fluid convections and the conductions through the tube walls and the fins. Since the wall temperature of the outer (ambient side) tube is very low in most cases, a heavy frost can be formed on the surface, affecting the heat exchange performance. By the method of the similarity between the heat and the mass transfer of moist air, the frost growth and the time-dependent effectiveness of the heat exchanger are calculated for various operating conditions. It is concluded that the frost formation can augment the heating of nitrogen during the initial period because of the latent heat, then gradually degrades the heat exchange because of the increased thermal resistance. Practical design issues are discussed for the flow rate of nitrogen, the velocity and humidity of ambient air, and the sizes of the fin.

  • PDF

Control Characteristics of ER engine mount considering Temperature Variation (온도 변화에 따른 ER 엔진마운트의 제어 특성)

  • Song, Hyun-Jeong;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.180-183
    • /
    • 2005
  • The engine mount of vehicle systems is role of support engine mass and isolate noise and vibration from engine disturbance forces. One of attractive candidates to achieve this goai is to utilize a semi-active ER engine mount. By applying this, we can effectively control damping force and hence the noise and vibration by just controlling the intensity of electric field. However, control performance of the engine mount may be very sensitive to temperature variation during engine operation. In this work, we Investigate dynamic performances of ER engine mount with respect to the temperature variation. In order to undertake this, a flow-mode type of ER engine mount is designed and manufactured. Displacement transmissibility is experimentally and numerically evaluated as a function of the electric field. The ER engine mount is then incorporated with full-vehicle model in order to investigate vibration control performance. After formulating the governing equation of motion, a semi-active controller is designed. The controller is implemented through a hardware-in-the-loop simulation (HILS), and control responses such as acceleration level at various engine speeds are evaluated in the frequency and time domains.

  • PDF

Effective Response of the Peritoneum Microenvironment to Peritoneal and Systemic Metastasis from Colorectal Carcinoma

  • Yu, Min;Niu, Zhi-Min;Wei, Yu-Quan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.12
    • /
    • pp.7289-7294
    • /
    • 2013
  • We here document discovery of a new and simple model of tumor seeding involving the mouse peritoneum. Irradiated tumor cells administered by i.p. injection provided effective vaccination against peritoneal carcinomatosis and distal metastasis with colorectal carcinomas. In flow cytometric analysis, CD4+ and CD8+ T lymphocytes, macrophages and myeloid-derived suppressor cells (MDSCs), which are easy to obtain in the peritoneal cavity, were revealed to have significant differences between immunized and non-immunized mice and these contributed to antitumor responses. We also observed that both serum and peritoneal lavage fluid harvested from immunized mice showed the presence of CT26-specific autoantibodies. In addition, increase in level of TGF-${\beta}1$ and IL-10 in serum but a decrease of TGF-${\beta}1$ in peritoneum was found. Taken together, these findings may provide a new vaccine strategy for the prevention of peritoneal and even systemic metastasis of carcinomas through induction of an autoimmune response in the peritoneum.

Decompressive Surgery in a Patient with Posttraumatic Syringomyelia

  • Byun, Min-Seok;Shin, Jun-Jae;Hwang, Yong-Soon;Park, Sang-Keun
    • Journal of Korean Neurosurgical Society
    • /
    • v.47 no.3
    • /
    • pp.228-231
    • /
    • 2010
  • Posttraumatic syringomyelia may result from a variety of inherent conditions and traumatic events, or from some combination of these. Many hypotheses have arisen to explain this complex disorder, but no consensus has emerged. A 28-year-old man presented with progressive lower extremity weakness, spasticity, and decreased sensation below the T4 dermatome five years after an initial trauma. Magnetic resonance imaging (MRI) revealed a large, multi-septate syrinx cavity extending from C5 to L1, with a retropulsed bony fragment of L2. We performed an L2 corpectomy, L1-L3 interbody fusion using a mesh cage and screw fixation, and a wide decompression and release of the ventral portion of the spinal cord with an operating microscope. The patient showed complete resolution of his neurological symptoms, including the bilateral leg weakness and dysesthesia. Postoperative MRI confirmed the collapse of the syrinx and restoration of subarachnoid cerebrospinal fluid (CSF) flow. These findings indicate a good correlation between syrinx collapse and symptomatic improvement. This case showed that syringomyelia may develop through obstruction of the subarachnoid CSF space by a bony fracture and kyphotic deformity. Ventral decompression of the obstructed subarachnoid space, with restoration of spinal alignment, effectively treated the spinal canal encroachment and post-traumatic syringomyelia.

Study on gender-neutral style in modern fashion (현대 패션에 나타난 젠더 뉴트럴 스타일에 관한 연구)

  • Lee, Ji-Eun;Kwak, Tai-Gi
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.22 no.3
    • /
    • pp.111-126
    • /
    • 2020
  • The purpose of this study is to understand the gender-neutral phenomenon, to grasp the flow of design, and to seek the future direction of modern fashion design. As for the scope and method of the study, this study was performed based on relevant literature. In terms of visual data, website photos were collected from the collection of S/S in 2016 to F/W in 2020. To assess the properties of the gender-neutral, analysis was implemented on the results after arranging the factors for gender neutrality and the characteristics suggested in the related papers. The fashion-related expert group analyzed the properties of the gender-neutral style from 1,031 pictures, where the gender-neutral style of fashion design collections was applied. As a result of the analysis, the characteristics of the gender-neutral were analyzed and divided into the extended body-positive performance style, the mashup style- respecting the conflicting culture, the street style of coexisting genders, and the fluid style of changing directions. In this study, the attributes were derived as acceptability, playfulness, and sustainability. Accordingly, it is expected that this study will play a fundamental role in the creative fashion design development and unfolding of the fashion industry and fashion designers.