DOI QR코드

DOI QR Code

Design, test and numerical simulation of a low-speed horizontal axis hydrokinetic turbine

  • Tian, Wenlong (School of Marine Science and Technology, Northwestern Polytechnical University) ;
  • Mao, Zhaoyong (School of Marine Science and Technology, Northwestern Polytechnical University) ;
  • Ding, Hao (School of Mechanic and Electronic Engineering, Henan University of Technology)
  • Received : 2017.07.06
  • Accepted : 2017.10.22
  • Published : 2018.11.30

Abstract

A small-scale horizontal axis hydrokinetic turbine is designed, manufactured and studied both experimentally and numerically in this study. The turbine is expected to work in most of China's sea areas where the ocean current velocity is low and to supply electricity for remote islands. To improve the efficiency of the turbine at low flow velocities, a magnetic coupling is used for the non-contacting transmission of the rotor torque. A prototype is manufactured and tested in a towing tank. The experimental results show that the turbine is characterized by a cut-in velocity of 0.25 m/s and a maximum power coefficient of 0.33, proving the feasibility of using magnetic couplings to reduce the resistive torque in the transmission parts. Three dimensional Computational Fluid Dynamics (CFD) simulations, which are based on the Reynolds Averaged Navier-Stokes (RANS) equations, are then performed to evaluate the performance of the rotor both at transient and steady state.

Keywords

References

  1. Alstom, 2013. Alstom's Tidal Turbine Reaches 1MW in Offshore Conditions. http://www.alstom.com/press-centre/2013/7/alstoms-tidal-turbine-reaches-1mw-in-offshore-conditions/. Accessed on 7 6 2017.
  2. Althaus, D., 1996. Niedriggeschwindigkeitsprofile. Friedr Vieweg & Sohn Verlagsgesellschaft mbH Braunschweig/Weisbaden, Germany.
  3. ANSYS, 2011. ANSYS 15.0 User's Guide.
  4. Atcheson, M., Mackinnon, P., Elsaesser, B., 2015. A large scale model experimental study of a tidal turbine in uniform steady flow. Ocean. Eng. 110, 51-61. https://doi.org/10.1016/j.oceaneng.2015.09.052
  5. Bahaj, A.S., Molland, A.F., Chaplin, J.R., et al., 2007. Power and thrust measurements of marine current turbines under various hydrodynamic flow conditions in a cavitation tunnel and a towing tank. Renew. Energ 32 (3), 407-426. https://doi.org/10.1016/j.renene.2006.01.012
  6. Belloni, Clarissa, S.K., 2013. Hydrodynamics of Ducted and Open-centre Tidal Turbines. University of Oxford.
  7. Cresswell, N.W., Ingram, G.L., Dominy, R.G., 2015. The impact of diffuser augmentation on a tidal stream turbine. Ocean. Eng. 108 (12), 155-163. https://doi.org/10.1016/j.oceaneng.2015.07.033
  8. Doman, D.A., Murray, R.E., Pegg, M.J., Nevalainen, T., et al., 2015. Tow-tank testing of a 1/20th scale horizontal axis tidal turbine with uncertainty analysis. Int. J. Mar. Energ 11, 105-119. https://doi.org/10.1016/j.ijome.2015.06.003
  9. Fleming, C.F., Mcintosh, S.C., Willden, R.H.J., 2011. Design and analysis of a bi-directional ducted tidal turbine. In: European Wave and Tidal Energy Conference, Southampton, UK.
  10. Fleming, C.F., Willden, R.H.J., 2016. Analysis of bi-directional ducted tidal turbine performance. Int. J. Mar. Energ 16, 162-173. https://doi.org/10.1016/j.ijome.2016.07.003
  11. Gaden, D.L.F., Bibeau, E.L., 2010. A numerical investigation into the effect of diffusers on the performance of hydro kinetic turbines using a validated momentum source turbine model. Renew. Energ 35 (6), 1152-1158. https://doi.org/10.1016/j.renene.2009.11.023
  12. Galloway, P.W., Myers, L.E., Bahaj, A.B.S., 2011. Experimental and Numerical Results of Rotor Power and Thrust of a Tidal Turbine Operating at Yaw and in Waves. World Renewable Energy Congress, Sweden, pp. 2246-2253.
  13. Gu, Y., Zhao, G., LIU, H., et al., 2013. Characteristics of drag reduction of bionic dimpled surface of shell rubber ring of aerodynamic extinguishing cannon. J. Jilin Univ. 43 (4), 983-990.
  14. Jeffcoate, P., Whittaker, T., Boake, C., et al., 2016. Field tests of multiple 1/10 scale tidal turbines in steady flows. Renew. Energ 87, 240-252. https://doi.org/10.1016/j.renene.2015.10.004
  15. Lawson, M.J., Li, Y., Sale, D.C., 2011. Development and Verification of a Computational Fluid Dynamics Model of a Horizontal-Axis Tidal Current Turbine. Office of Scientific & Technical Information Technical Reports.
  16. Lee, N.J., Kim, I.C., Chang, G.K., et al., 2016. Performance study on a counter-rotating tidal current turbine by CFD and model experimentation. J. Mech. Sci. Technol. 30 (2), 519-524. https://doi.org/10.1007/s12206-016-0104-y
  17. Liu, J., Lin, H., Purimitla, S.R., 2016. Wake field studies of tidal current turbines with different numerical methods. Ocean. Eng. 117, 383-397. https://doi.org/10.1016/j.oceaneng.2016.03.061
  18. Liu, Z., Wang, H., 2014. Effect of bionic concave surface to the drag reduction performance of cylinder sealing ring. Adv. Mater. Res. 1055, 152-156. https://doi.org/10.4028/www.scientific.net/AMR.1055.152
  19. Louise, K., Bjoern, E., Robert, K., et al., 2016. Do changes in current flow as a result of arrays of tidal turbines have an effect on Benthic communities? Plos One 11 (8), e0161279. https://doi.org/10.1371/journal.pone.0161279
  20. Luquet, R., Bellevre, D., Frechou, D., et al., 2013. Design and model testing of an optimized ducted marine current turbine. Int. J. Mar. Energ 2, 61-80. https://doi.org/10.1016/j.ijome.2013.05.009
  21. Maxon, 2017. Maxon Motor. http://www.maxonmotor.com/maxon/view/content/products. Accessed on 7 6 2017.
  22. MCT, 2017. SeaGen Technology. http://www.marineturbines.com/Seagen-Technology. Accessed on 7 6 2017.
  23. Morandi, B., Felice, F.D., Costanzo, M., et al., 2016. Experimental investigation of the near wake of a horizontal axis tidal current turbine. Int. J. Mar. Energ 14, 229-247. https://doi.org/10.1016/j.ijome.2016.02.004
  24. Mycek, P., Gaurier, B., Germain, G., et al., 2014a. Experimental study of the turbulence intensity effects on marine current turbines behavior. Part I: one single turbine. Renew. Energ 66, 729-746. https://doi.org/10.1016/j.renene.2013.12.036
  25. Mycek, P., Gaurier, B., Germain, G., et al., 2014b. Experimental study of the turbulence intensity effects on marine current turbines behaviour. Part II: two interacting turbines. Renew. Energ 68, 876-892. https://doi.org/10.1016/j.renene.2013.12.048
  26. Sale, D.C., 2014. NWTC Information Portal (HARP_Opt). https://nwtc.nrel.gov/HARP_Opt. Accessed on 7 6 2017.
  27. Schleicher, W.C., Riglin, J.D., Oztekin, A., 2014. Numerical characterization of a preliminary portable micro-hydrokinetic turbine rotor design. Renew. Energ 76, 234-241.
  28. Seo, J., Lee, S.J., Choi, W.S., et al., 2016. Experimental study on kinetic energy conversion of horizontal axis tidal stream turbine. Renew. Energ 97, 784-797. https://doi.org/10.1016/j.renene.2016.06.041
  29. Shives, M., Crawford, C., 2010. Overall Efficiency of Ducted tidal current turbines. Oceans 2010, 1-6.
  30. Tatum, S., Allmark, M., Frost, C., et al., 2016. CFD modelling of a tidal stream turbine subjected to profiled flow and surface gravity waves. Int. J. Mar. Energ 15, 156-174. https://doi.org/10.1016/j.ijome.2016.04.003
  31. Tethys, 2011. HS1000 at EMEC. https://tethys.pnnl.gov/annex-iv-sites/hs1000-emec. Accessed on 7 6 2017.
  32. Tian, W., Vanzwieten, J.H., Pyakurel, P., et al., 2016. Influences of yaw angle and turbulence intensity on the performance of a 20kW in-stream hydrokinetic turbine. Energy 111, 104-116. https://doi.org/10.1016/j.energy.2016.05.012
  33. UIUC, 2011. Airfoil Coordinates Database. University of Illinois at Urbana-Champaign. http://m-selig.ae.illinois.edu/ads/coord_database.html#F. Accessed on 7 6 2017.
  34. Wang, S., Yuan, P., Li, D., et al., 2011. An overview of ocean renewable energy in China. Renew. Sust. Energy Rev. 15 (1), 91-111. https://doi.org/10.1016/j.rser.2010.09.040
  35. Wang, S.Q., Sun, K., Xu, G., et al., 2016. Hydrodynamic analysis of horizontal-axis tidal current turbine with rolling and surging coupled motions. Renew. Energy 102, 87-97.
  36. Xu, G., Zhao, J., Zhao, G., et al., 2015. Drag reduction characteristic of bionic non-smooth seal ring for cylinder. Chin. Hydraul. Pneum. (1), 96-100.

Cited by

  1. Optimal design of power generation equipment for autonomous underwater vehicle vol.10, pp.11, 2018, https://doi.org/10.1177/1687814018809501
  2. 쉬라우드 조류발전장치의 축소모형실험을 통한 발전 성능 분석 vol.31, pp.4, 2019, https://doi.org/10.9765/kscoe.2019.31.4.221
  3. Prediction and multi‐objective optimization of tidal current turbines considering cavitation based on GA‐ANN methods vol.7, pp.5, 2018, https://doi.org/10.1002/ese3.399
  4. 조류발전 시스템 내 블레이드 회전수 변화에 따른 효율 특성 분석 vol.31, pp.5, 2018, https://doi.org/10.9765/kscoe.2019.31.5.314
  5. Noise Characteristics Analysis of the Horizontal Axis Hydrokinetic Turbine Designed for Unmanned Underwater Mooring Platforms vol.7, pp.12, 2018, https://doi.org/10.3390/jmse7120465
  6. A Comparative Study on the Performance of a Horizontal Axis Ocean Current Turbine Considering Deflector and Operating Depths vol.12, pp.8, 2018, https://doi.org/10.3390/su12083333
  7. Compact Low-Velocity Ocean Current Energy Harvester Using Magnetic Couplings for Long-Term Scientific Seafloor Observation vol.8, pp.6, 2018, https://doi.org/10.3390/jmse8060410
  8. On the Performance of Small-Scale Horizontal Axis Tidal Current Turbines. Part 1: One Single Turbine vol.12, pp.15, 2018, https://doi.org/10.3390/su12155985
  9. Investigation of the Possibilities to Improve Hydrodynamic Performances of Micro-Hydrokinetic Turbines vol.13, pp.17, 2020, https://doi.org/10.3390/en13174560
  10. Hydrodynamics and Tidal Turbine Generator Stability Analysis in Several Wave Variations vol.2021, pp.None, 2021, https://doi.org/10.1155/2021/6682407
  11. Instability of the tip vortices shed by an axial-flow turbine in uniform flow vol.920, pp.None, 2021, https://doi.org/10.1017/jfm.2021.433
  12. Design, Analysis, and Fabrication of Water Turbine for Slow-Moving Water vol.144, pp.8, 2022, https://doi.org/10.1115/1.4052773