• Title/Summary/Keyword: fluid and flow

Search Result 7,252, Processing Time 0.034 seconds

Radiative Effect on the Conjugated Forced Convection-Conduction Heat Transfer in a Plate Fin (평판 핀에서의 강제대류 열전달에 미치는 복사효과)

  • 손병진;민묘식;최상경
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.2
    • /
    • pp.453-462
    • /
    • 1990
  • The interaction of forced convection-conduction with thermal radiation in laminar boundary layer over a plate fin is studied numerically. The analysis is based on complete solution whereby the heat conduction equation for the fin is solved simultaneously with the conservation equations for mass, momentum and energy in the fluid boundary layer adjacent to the fin. The fluid is a gray medium and diffusion(Rosseland) approximation is used to describe the radiative heat flux in the energy equation. The resulting boundary value problem are convection-conduction parameter N$_{c}$ and radiation-conduction parameter m, Prandtl number Pr. Numerical results are presented for gases with the Prandtl numbers of 0.7 & 5 with values of N$_{c}$ and M ranging from 0 to 10 respectively. The object of this study is to provide the first results on forced convection-radiation interaction in boundary layer flow over a semi-infinite flay plate which can be used for comparisons with future studies that will consider a more accurate expression for the radiative heat flux. The agreement of the results from the complete solution presented by E. M. Sparrow and those from this paper for the special case of M=0 is good. The overall rate of heat transfer from the fin considering radiative effect is higher than that from the fin neglecting radiative effect. The local heat transfer coefficient with radiative effect is higher than that without radiative effect. In the direction from tip to base, those coefficients decrease at first, attain minimum, and then increase. The larger values of N$_{c}$ M, Pr give rise to larger fin temperature variations and the fin temperature without radiative effect is always higher than that with radiative effect.

CAE/CFD Analysis and Design of High-Pressure Drop Control Valve for Offshore Project (해양플랜트용 고차압 제어밸브의 해석 및 설계)

  • Jang, Sung Cheol;Park, Tae-Soo;Hur, Nam-Soo;Kim, In-Whan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.5
    • /
    • pp.42-49
    • /
    • 2015
  • In this study, the multi-disk of a high-pressure drop control valve is designed and manufactured. Then, the flow rate and high-pressure drop of fluids flowing in the high-pressure drop control valve is CAE/CFD. This study involves numerical analysis for the Zambil offshore project of a high-pressure drop control valve. ANSYS used a solver for offshore structures analysis. A high-pressure drop control valve, which transforms the power transfer of a system by reducing the inlet pressure of 345bar to the outlet pressure of 112bar, is a fundamental component in the offshore process. This study not only analyzes the relation between pressure drop and fluid velocity in a trim by using fluid analysis, but also examines the possibility of cavitation in a valve in addition to the plot for the extension of lifespan. It is demonstrated that the pressure drop from 345bar to 112bar is more feasible in the presence of the trim, which can induce a continuous and diminutive pressure drop in order to prevent cavitation in a high-pressure drop control valve.

Study on Hydraulic Fracturing in Transverse Isotropic Rock Using Bonded Particle Model (입자결합모델을 이용한 횡등방성 암석에서의 수압파쇄 특성 연구)

  • Jung, Jaewoong;Heo, Chan;Jeon, Seokwon
    • Tunnel and Underground Space
    • /
    • v.23 no.6
    • /
    • pp.470-479
    • /
    • 2013
  • Hydraulic fracturing is used as a method for promoting the fluid flow in the rock and, in the energy field such as geothermal development and the development of sales gas, many studies has been actively conducted. In many cases, hydraulic fracturing is not performed in isotropic rock and especially in the case of sedimentary rocks, hydraulic fracturing is conducted in the transverse isotropic rock. The direction of the crack growth on hydraulic fracturing does not necessarily coincides with the direction of maximum principal stress in the transverse isotropic rock. Therefore, in this study, bonded particle model with hydro-mechanical coupling analysis was adopted for analyzing the characteristics of hydraulic fracturing in transverse isotropic rock. In addition, experiments of hydraulic fracturing were conducted in laboratory-scale to verify the validity of numerical analysis. In this study, the crack growth and crack patterns showed significant differences depending on the viscosity of injection fluid, the angle of bedding plane and the influence of anisotropy. In the case of transverse isotropic model, the shear crack growth due to hydraulic fracturing appeared prominently.

Design of Rankine Steam Cycle and Performance Evaluation of HT Boiler for Engine Waste Heat Recovery (엔진 폐열 회수를 위한 랭킨 스팀 사이클 설계 및 HT Boiler의 성능 평가)

  • Heo, Hyung-Seok;Bae, Suk-Jung;Lee, Dong-Hyuk;Lee, Heon-Kyun;Kim, Tae-Jin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.2
    • /
    • pp.21-29
    • /
    • 2012
  • A dual loop waste heat recovery system with Rankine steam cycles for the improvement of fuel efficiency of gasoline vehicles has been investigated. A high temperature loop (HT loop) only recovers the heat of the exhaust gas. A low temperature loop (LT loop) recovers the residual heat from the HT loop, the coolant heat and the remaining exhaust gas heat. The two separate loops are coupled with a heat exchanger. This paper has dealt with a layout of the dual loop system, the review of the working fluids, and the design of the cycle. The design point and the target heat recovery of the HT boiler, a core part of a HT loop, have been presented. The prototype of the HT boiler was evaluated by experiment. For the performance evaluation of the HT boiler, inlet temperature of the HT boiler working fluid was set equal to the temperature degree of sub-cool of $5^{\circ}C$ at the condensing pressure. The exit condition was the degree of super-heat set at $5^{\circ}C$. The characteristics of the HT boiler such as heat recovery and pressure drops of fluids were evaluated with varying flow rates and inlet temperatures of exhaust gas under various evaporating pressure conditions.

A Study on the Behavior of Class 900 Flange Joints with Metal Ring Gaskets (금속 링 개스킷이 삽입된 Class 900 플랜지 조인트의 거동에 관한 연구)

  • Lee, Min-Young;Jeong, Doo-Hyung;Kim, Byung-Tak
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.1
    • /
    • pp.34-41
    • /
    • 2018
  • A flange joint is a pipe connection used to prevent the leakage of high-pressure fluids by inserting a gasket and tightening the bolts. Among several kinds of gaskets available, metal ring type joint gaskets are most widely used in conditions that require high-temperature and high-pressure fluid flow, such as oil pipelines, gas pipes, pumps, valve joints, etc. The purpose of this study is to investigate the contact pressure and stress characteristics closely related to the sealing performance of Class 900 flange joints used in high temperature and high pressure environments. The dimensions of flange joints with five different nominal pipe sizes were determined with reference to those specified in ASME 16.5. The metal ring gaskets inserted in the joints were octagonal and oval gaskets. The bolt tensile forces calculated from the tightening torques were input as the bolt pretension loads in order to determine the contact pressure and stress levels after fastening. Loading was composed of three steps, including the fastening step, and different amounts of applied pressures were used in each analysis to investigate the effect of fluid pressure on the contact force of the joints. A general-purpose software, ANSYS 17.2, was used for the analysis.

A Study of Development of an Axial-Type Fan with an Optimization Method (최적화기법을 이용한 축류형 송풍기개발에 관한 연구)

  • Cho, Bong-Soo;Cho, Chong-Hyun;Jung, Yang-Beom;Cho, Soo-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.6
    • /
    • pp.7-16
    • /
    • 2007
  • An axial-type fan which operates at the relative total pressure of 671Pa and static pressure of 560Pa with the flow rate of $416.6m^3/min$ is developed with an optimization technique based on the gradient method. Prior to the optimization of fan blade, a three-dimensional axial-type fan blade is designed based on the free-vortex method along the radial direction. Twelve design variables are applied to the optimization of the rotor blade, and one design variable is selected for optimizing a stator which is located behind of the rotor and is used to support a fan driving motor. The total and static pressure are applied to the restriction condition with the operating flowrate on the design point, and the efficiency is chosen as the response variable to be maximized. Through these procedures, an initial axial-fan blade designed by the free vortex method is modified to increase the efficiency with the satisfaction of the operating condition. The optimized fan is tested to compare the aerodynamic performance with an imported same class fan. The test result shows that the optimized fan operates with the satisfaction of restriction conditions, but the imported fan cannot. From the experimental and numerical test, they show that this optimization method improves the fan efficiency and operating pressures of a fan designed by the classical fan design method.

Study on noise prediction by classification of noise sources of a tip-jet driven rotor (팁젯 로터의 소음원 구분을 통한 소음 예측 기법 연구)

  • Ko, Jeongwoo;Kim, Jonghui;Lee, Soogab
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.2
    • /
    • pp.83-91
    • /
    • 2018
  • The noise sources of a tip-jet driven rotor can be separated by rotor blade noise and jet noise. The rotor blade noise consists of thickness noise, loading noise, nonlinear quadrupole noise, and jet noise is divided into nozzle momentum noise and jet radiation noise. The flow analysis for the prediction of rotor blade noise is performed by CFD (Computational Fluid Dynamics) analysis, and the noise source of the rotor blade noise is identified by simultaneously applying the permeable and impermeable surface based FW-H (Ffowcs Williams-Hawkings) acoustic analogy. The nozzle momentum noise is obtained by permeable surface FW-H, and jet radiation noise is predicted by using empirical method for the fixed-wing jet. Both of jet noises use nozzle exit condition for noise analysis. The accuracy of the technique is verified based on the noise measurements of the tip-jet driven rotor, and the unique noise characteristics of the tip-jet driven rotor is confirmed by spectrum analysis.

Valve core shapes analysis on flux through control valves in nuclear power plants

  • Qian, Jin-yuan;Hou, Cong-wei;Mu, Juan;Gao, Zhi-xin;Jin, Zhi-jiang
    • Nuclear Engineering and Technology
    • /
    • v.52 no.10
    • /
    • pp.2173-2182
    • /
    • 2020
  • Control valves are widely used to regulate fluid flux in nuclear power plants, and there are more than 1500 control valves in the primary circuit of one nuclear power plant. With their help, the flux can be regulated to a specific level of water or steam to guarantee the energy efficiency and safety of the nuclear power plant. The flux characteristics of the control valve mainly depend on the valve core shape. In order to analyze the effects of valve core shapes on flux characteristics of control valves, this paper focuses on the valve core shapes. To begin with, numerical models of different valve core shapes are established, and results are compared with the ideal flux characteristics curve for the purpose of validation. Meanwhile, the flow fields corresponding to different valve core shapes are investigated. Moreover, relationships between the valve core opening and the outlet flux under different valve core shapes are carried out. The flux characteristics curve and equation are proposed to predict the outlet flux under different valve core openings. This work can benefit the further research of the flux control and the optimization of the valve core for control valves in nuclear power plants.

Resonance May Elucidate New Bone Formation Induced by Low amplitude and High frequency Mechanical Stimuli (고주파 미세자극에 의한 뼈의 생성에 관한 모델링)

  • Yoon, Young June;Kim, Moon-Hwan;Bae, Cheol-Soo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.1 no.3
    • /
    • pp.27-32
    • /
    • 2008
  • Bone is a self-assembly material. It is known that the low amplitude and high frequency mechanical stimulus, which is much less amplitude but higher frequency than those induced by the normal activity, can induce new bone formation. The vibrating resonance is employed to elucidate why new bone is formed by this kind of mechanical stimulus. For example, as 30 Hz and $5{\mu}{\epsilon}$ mechanical stimulus is applied at the wall of canaliculus (the tiny tube type pathway of bone fluid flow and the diameter of canaliculus is less than 200nm), the osteocytic cell membrane experiences $1,000{\mu}{\epsilon}$ strain due to the vibrating resonance. Two experiments will follow after this pilot study; (1) observing the MAPK pathway of osteocytes by using in-vitro cell culture and (2) visualizing the actin filament network in the osteocytes by using the imaging technique, such as confocal laser scanning microscope.

  • PDF

Numerical Study on Fine Migration in Geo-materials (지반내 세립토 유동에 대한 수치해석적 연구)

  • Shin, Hosung
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.11
    • /
    • pp.33-41
    • /
    • 2018
  • Soil internal erosion is a phenomenon in which fines attached to the solid skeleton are detached by fluid flow, and this continuous fine migration weakens the hydro-mechanical characteristics of the ground structure. This paper proposed governing equations for fine migration in pore spaces and its related scheme for the numerical analysis. Phase diagram for fine particles includes three different states: detached fines in the liquid phase ($c_e$), attached fines in the solid phase (${\sigma}_a$), and pore-clogged fines in the solid phase (${\sigma}_s$). Numerical formulations for finite element method are developed based on the hydraulic governing equations of pore fluid and fine migration. This study proposed a method of estimating model parameters for fine detachment, attachment, and clogging from 1D erosion experiments. And it proposed an analytical formula for hydraulic permeability function considering fine clogging. Numerical analysis of the previous erosion test developed the numerical scheme and verified the adequacy of fine migration models.