• Title/Summary/Keyword: fluid and flow

Search Result 7,252, Processing Time 0.039 seconds

The Effect of the Diameter and Rotational Velocity on the Cavitation Performance of a Turbopump Inducer (터보펌프 인듀서의 흡입성능에 대한 직경과 회전속도의 영향)

  • Sohn, Dong Kee;Koo, Hyun Chul;Cha, Bong Jun;Yang, Soo Seok;Lee, Dae Sung
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.229-234
    • /
    • 2001
  • The turbopump inducer cavitation is very important for the success of a Liquid rocket engine. In this study the performance test and cavitation performance test were carried out at various rotational speed with two different diameter inducers. The rotational speed were varied 4000, 6000, 8000 rpm and the variation to the diameter of an inducer were taken as design size and 2 times enlarged size. The major results of the present study were as follows. 1. The hydraulic performance results showed that the similarity was met over the entire test range of the present study. 2. The blade thickness effect was examined and showed that the increased blade thickness resulted in decreased efficiency and worse cavitation performance for large tip clearance. 3. The cavitation performance test results showed that the breakdown NPSH increases as the flow coefficient and does not affected by the rotational speed.

  • PDF

Continuous Viscosity Measurement of Non-Newtonian Fluids over a Range of Shear Rates Using a Mass-Detecting Capillary Viscometer

  • Sehyun Shin;Keum, Do-Young
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.255-261
    • /
    • 2002
  • A newly designed mass-detecting capillary viscometer uses a novel concept to continuously measure non-Newtonian fluids viscosity over a range of shear rates. A single measurement of liquid-mass variation with time replaces the now rate and pressure drop measurements that are usually required by capillary tube viscometers. Using a load cell and a capillary, we measured change in the mass flow rate through a capillary tube with respect to the time, m(t), from which viscosity and shear rate were mathematically calculated. For aqueous polymer solutions, excellent agreement was found between the results from the mass-detecting capillary viscometer and those from a commercially available rotating viscometer. This new method overcomes the drawbacks of conventional capillary viscometers meassuring non-Newtonian fluid viscosity. First, the mass-detecting capillary viscometer can accurately and consistently measure non -Newtonian viscosity over a wide range of shear rate extending as low as 1 s$\^$-1/. Second, this design provides simplicity (i. e., ease of operation, no moving parts), and low cost.

마찰가공에 있어서의 분위기 영향에 관한 연구 제 1장

  • ;Sohn, Myung-Whan
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.5 no.4
    • /
    • pp.338-346
    • /
    • 1981
  • Honing, lapping, polishing and superfinishing are applied for a precision machining to finish the metal surface, but these precision machining are micro-cutting by hard and micro-abrasive grains. Frictional machining is the new method to finish mirrorlike surface without using those abrasive grains. The frictional machining produces high pressure and high temperature instantly by compressing a tool material against the metal surface in sliding motion. The metal surface is given plastic deformation and plastic flow by the above mentioned frictional motion, but the surface roughness of the metal surface is influenced by physical and chemical reaction in surrounding atmosphere. Therefore, the atmosphere around the metal optimum atmosphere in the frictional machining. The part 1 of the study was performed in liquid atmospheres. Diesel oil, lubricant, grease, lard oil, bean oil and cutting fluid were used as such atmospheres. Medium carbon steel SM 50 C was used as a workpiece and ceramic tip was applied as a frictional tool. The result of the experiment showed characteristic machining conditions to generate the best surface roughness in each atmospheres.

A Study on the Flow Characteristic of surroundings of the Extracting Nozzle for Shell Wall Thinning of a Feedwater Heater (고압형 급수가열기 동체 감육 완화를 위한 추기노즐 주변의 유동특성 연구)

  • Seo, Hyuk-Ki;Kim, Yoon-Shin;Kim, Kyung-Hun;Hwang, Kyeong-Mo
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.841-846
    • /
    • 2009
  • Several nuclear power plants in Korea have experienced wall thinning damage in the area around the impingement baffle-installed downstream of the high pressure turbine extraction stream line inside number 5A and 5B feedwater heaters. At that point, the extracted steam from the high pressure turbine is two phase fluid at high temperature, high pressure, and high speed. This paper describes operation of experience and numerical analysis composed similar condition with real high pressure feedwater heater. This study applied several impingement baffle plates to feedwater heater same as previous study. In addition, it shows difference of pressure distribution and value between single phase and two phase based on experience and numerical analysis.

  • PDF

Numerical Analysis of Heat Flow in Fire Compartment using SIMPLE Algorithm (SIMPLE Algorithm을 이용한 화재실의 열 유체의 수치해석)

  • 김광선;손봉세
    • Fire Science and Engineering
    • /
    • v.6 no.1
    • /
    • pp.17-22
    • /
    • 1992
  • We have derived the general transfer equation for governing the continuity, energy transfer, mass and momentum transfer, and turbulent energy dissipation rate within the fire compartment which has the 800t fire source at the center of the floor. The governing transfer equations have been descretized using the finite volume approach and numerically experimented under the SIMPLE algorithm. In order for the SIMPLE algorithm approach to be physically reliable, the test results are compared with those of Morita's SOR Method using Conjugate Residual Method and found to be close to physical values though the computational convergence time still remains to be upgraded. The treatment of source terms in the system of finite difference equations has been critical in order to converge the governing equations within the appropriate time steps. The criteria of convergence allowance for the whole domain have been checked and the sudden change of the non-linear effects from the source term have been avoided. The criteria has been allowed to be for 5$\times$10$^{-5}$ .

  • PDF

CFD Analysis on Shoe and Swash-Plate of Axial Piston Pump (사판식 유압펌프의 피스톤 슈 간극의 유동해석)

  • Kim, In-Soo;Lee, Kyong-Hoon;Bae, Jae-Man
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.156-158
    • /
    • 2008
  • Along the various gap distance between shoe and swash plate and pocket diameter, lifting force of piston shoe during the compressing stage was calculated. The flow in piston, orifice, shoe, and back space was considered to be 2-dimension axisymmetric and analysed by Fluent, a commercial CFD Software. The wall boundary condition was given as nonslip and adiabatic, while the change in fluid viscosity was considered as linear along temperature. Calculated lifting force and oil leakage of shoe was used in the design of a pump to confirm the shape of the shoe.

  • PDF

Aerodynamic Three Dimensional Geometry and Combustor Design for the Compressor of the Medium Speed Diesel Engine Turbocharger (중형 엔진 터보차져의 원심압축기에 관한 공력학적 3차원 형상 및 구동용 연소기 설계)

  • Kim, Hong-Won;Ryu, Seung-Hyup;Ghal, Sang-Hak;Ha, Ji-Soo;Kim, Seung-Kuk
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.517-524
    • /
    • 2005
  • An aerodynamic design for centrifugal compressor which was applied to medium speed diesel engine has done. First of all, exact compressor specifications must be defined by accurate engine system matching. This matching program has been developed. Using the mean1ine prediction method, geometric design and performance curve for compressor was done and verified by comparing three dimensional viscous CFD results. The deviation at the design point was about 2.3%. Combustor has been designed and manufactured for the performance test of medium speed diesel engine turbocharger. Fuel nozzle of combustor was designed and performed by PIV and PDPA test equipment. Through these results, spray characteristics were studied and flow coefficient equation was deduced.

  • PDF

The Application of Computer Simulation, Industrial CT and DLS RP for the rapid development of casting pilot models (신속한 주물 시제품 개발을 위한 전산모사 기술과 산업용 단층촬영기 및 쾌속표형기의 적용)

  • Yoo S.M.;Lim C.H.;Cho I.S.;Choi J.K.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.195-196
    • /
    • 2006
  • Direct laser sintering (DLS) technology for the resign coated sand is one of attractive technologies to produce molds and cores for the foundry industry rapidly and cost effectively. The objective of this case study is to develop casting pilot models using computer simulation technology, DLS RP machine and industrial computed tomography. The proposed casting design was verified by the Z-Cast software in the fields of fluid flow and solidification during the casting process. Casting parts with aluminum alloy using the post-curing treated sand moulds and cores are accurate to dimension and defect free.

  • PDF

Characteristics of Lubrication between Slipper and Swashplate in Swashplate Type Hydraulic Piston Pump (사판식 유압 피스톤 펌프의 슬리퍼와 사판 간의 윤활 특성)

  • Cho, Ihnsung
    • Tribology and Lubricants
    • /
    • v.29 no.3
    • /
    • pp.186-191
    • /
    • 2013
  • Hydraulic systems are used to transform mechanical energy into fluid energy and vice versa. They are widely applied in various industries; e.g., they are used in automobiles, public works, rockets, machine tools, heavy construction equipment, and airplanes. Hydraulic pumps are used to transform the energy in these systems. In this study, with the basic operation principles as a starting point, I attempted to clarify how the shape of a slipper affects the lubrication characteristics under practical conditions. A swashplate with a tilt angle of zero and capable of rotating motion was used, along with other devices. A slipper was located at 45 mm eccentricity from the center of the swashplate. The results of this experiment indicated that the shape of the bottom surface of a slipper affects the load capacity, leakage flow, and lubrication characteristics and that the slipper is one of the most important parts for improving the pump efficiency.

Acoustical Performance Analysis of Simple Expansion Silencer using Lattice Boltzmann Method (격자 볼츠만법을 이용한 단순 확장형 소음기 음향특성 해석)

  • Lee, Songjune;Lee, Gwang-Se;Cheong, Cheolung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.966-972
    • /
    • 2014
  • The Lattice Boltzmann Method (LBM) has attracted attention as an alternative numerical algorithm for solving fluid mechanics, and its intrinsic unsteadiness and weak numerical damping make it more suitable for aeroacoustic problems. In this paper, applicability of the LBM for solving flow noise problems is tested by applying it to predict transmission loss of a simple expansion silencer. The time history of the static pressure is recorded at the inlet and outlet pipes. The transmission loss (TL) of the muffler is computed by using three point method and two source method, respectively. The TL calculated using the LBM is compared with that computed using finite element method (FEM) and measured data. It is found through these comparisons that the LBM is capable of predicting TL of the simple expansion silencer accurately, which it is difficult to predict using the conventional CFD methods based on the RANS solvers.

  • PDF