• Title/Summary/Keyword: fluid and flow

Search Result 7,252, Processing Time 0.036 seconds

Study on Temperature Characteristics of Friction Stir Welding Process by Numerical Analysis (수치해석을 활용한 마찰교반용접 공정의 온도 특성 분석 연구)

  • Kim, Moosun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.513-518
    • /
    • 2019
  • Friction Stir Welding is a welding technique for metal materials that utilizes the heat generated by friction between the material to be welded and the welding tool that rotates at high speed. In this study, a numerical analysis method was used to analyze the change in the internal temperature of the welded material during friction stir welding. As the welding target material, AZ31 magnesium alloy was applied and the welding phenomenon was considered a flow characteristic, in which a melting-pool was formed. FLUENT was used as the numerical tool to perform the flow analysis. For flow analysis of the welding process, the welding material was assumed to be a high viscosity Newtonian fluid, and the boundary condition of the welding tool and the material was considered to be the condition that friction and slippage occur simultaneously. Analyses were carried out for various rotational speeds and the translational moving speed of the welding tool as variables. The analysis results showed that the higher the rotational speed of the welding tool and the slower the welding tool movement speed, the higher the maximum temperature in the material increases. Moreover, the difference in the rotational speed of the welding tool has a greater effect on the temperature change.

Development of Pressure Drop Model for the Compartment in Reactor Containment (격납용기내 구분방사이의 압력 강하 계산모델 개발)

  • Park, Cheol;Song, In-ho;Lee, Un-Chul
    • Nuclear Engineering and Technology
    • /
    • v.18 no.3
    • /
    • pp.183-193
    • /
    • 1986
  • Full scale HDR containment experiment series pointed out that the previous containment analysis models have a number of shortcomings. One of them is on the calculational model of short term (0~2sec) pressure difference. The pressure differences between subcompartments are dependent on the flow rate, fluid density, head loss coefficient, and flow area ratio. It, however, is not known that any of them is largely attributed to the disagreement of pressure difference between the measured and the calculated values. In this study, the head loss coefficients are expressed with another form to improve the analytic model. The pressure and the pressure difference are evaluated by using COMPARE code with new correlation, and the results show better agreements with experimental values for V.42 test, but overestimate the measured values for V, 43 and underestimate for V.44.

  • PDF

Evaluating Effective Volume and Hydrodynamic Behavior in a Full-Scale Ozone Contactor with CFD Simulation (전산유체역학을 이용한 실규모 오존 접촉에서의 수리거동과 유효 체적 평가에 관한 연구)

  • Park, No-Suk;Mizuno, Tadao;Tsuno, Hiroshi;Bea, Chul-Ho;Lee, Seon-Ju
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.5
    • /
    • pp.656-665
    • /
    • 2004
  • An Ozone reaction model combined with CFD(Computational Fluid Dynamics) technique was developed in this research, in the simulation of ozonation, hydrodynamic behavior as well as reaction model is important because ozone is supplied to treated water as gas ozone. In order to evaluate hydrodynamic behavior in an ozone contactor, CFD technique was applied. CFD technique elucidated hydrodynamic behavior in the selected ozone contactor, which consisted of three main chambers. Three back-mixing zones were found in the contactor. The higher velocities of water were observed in the second and third compartments than that in the first compartment. The flow of the opposite direction to the main flow was observed near the water surface. Based on the results of CFD simulation, the ozone contactor was divided into small compartments. Mass balance equations were established were established in each compartment with reaction terms. This reaction model was intended to predict dissolved ozone concentration, especially. We concluded that the model could predict favorably the mass balance of ozone, namely absorption efficiency of gaseous ozone, dissolved ozone concentration and ozone consumption. After establishing the model, we discussed the effect of concentration of gaseous ozone at inlet, temperature and organic compounds on dissolved ozone concentration.

Numerical Study on the Drag of a Car Model under Road Condition (주행조건에서의 자동차 모델 항력에 대한 수치해석적 연구)

  • Kim, Beom-Jun;Kang, Sung-Woo;Choi, Hyoung-gwon;Yoo, Jung-Yul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.8
    • /
    • pp.1182-1190
    • /
    • 2003
  • A parallelized FEM code based on domain decomposition method has been recently developed for large-scale computational fluid dynamics. A 4-step splitting finite element algorithm is adopted for unsteady flow computation of the incompressible Navier-Stokes equation, and Smagorinsky LES model is chosen for turbulent flow computation. Both METIS and MPI Libraries are used for domain partitioning and data communication between processors, respectively. Tiburon model of Hyundai Motor Company is chosen as the computational model at Re=7.5 $\times$ 10$^{5}$ , which is based on the car height. The calculation is carried out under both the wind tunnel condition and the road condition using IBM SP parallel architecture at KISTI Super Computing Center. Compared with the existing experimental data, both the velocity and pressure fields are predicted reasonably well and the drag coefficient is in good agreement. Furthermore, it is confirmed that the drag under the road condition is smaller than that under the wind-tunnel condition.

MECHANISM OF NUCLEATE BOILING HEAT TRANSFER FROM WIRES IMMERSED IN SATURATED FC-72 AND WATER (전열면적 및 유체의 종류가 핵비등 열전달에 미치는 영향과 그 원인)

  • Kim, J.H.;You, S.M.;Park, J.Y.
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.232-239
    • /
    • 2001
  • The present study is an experimental investigation of nucleate boiling heat transfer mechanism in pool boiling from wire heaters immersed in saturated FC-72 coolant and water. The vapor volume flow rate departing from a wire during nucleate boiling was determined by measuring the volume of bubbles, varying $25{\mu}m,\;75{\mu}m,\;and\;390{\mu}m$, from a wire utilizing the consecutive-photo method. The effects of the wire size on heat transfer mechanism during a nucleate boiling were investigated by measuring vapor volume flow rate and the frequency of bubbles departing from a wire immersed in saturated FC-72. One wire diameter of $390{\mu}m$ was selected and tested in saturated water to investigate the fluid effect on the nucleate boiling heat transfer mechanism. Results of the study showed that an increase in nucleate boiling heat transfer coefficients with reductions in wire diameter was related to the decreased latent heat contribution. The latent heat contribution of boiling heat transfer for the water test was found to be higher than that of FC-72. The frequency of departing bubbles was correlated as a function of bubble diameters.

  • PDF

COMPUTATION OF AERODYNAMIC SOUNDS AT LOW MACH NUMBERS USING FINITE DIFFERENCE LATTICE BOLTZMANN METHOD

  • Kang H. K;Tsutahara M;Shikata K;Kim E. R;Kim Y. T;Lee Y. H
    • Journal of computational fluids engineering
    • /
    • v.10 no.1
    • /
    • pp.8-15
    • /
    • 2005
  • Aerodynamic sounds generated by a uniform flow around a two-dimensional circular cylinder at Re=150 are simulated by applying the finite difference lattice Boltzmann method. Thethird-order-accurate up-wind scheme (UTOPIA) is used for the spatial derivatives, and the second-order-accurate Runge-Kutta scheme is applied for the time marching. We have succeed in capturing very small pressure fluctuations with the same frequency of the Karman vortex street compared with the pressure fluctuation around a circular cylinder. The propagation velocity of the acoustic waves shows that the points of peak pressure are biased upstream due to the Doppler effect in the uniform flow. For the downstream, on the other hand, it is faster. It is also apparent that the amplitude of sound pressure is proportional to r /sup -1/2/,r being the distance from the center of the circular cylinder. To investigate the effect of the lattice dependence, furthermore, 2D computations of the tone noises radiated by a square cylinder and NACA0012 with a blunt trailing edge at high incidence and low Reynolds number are also investigate.

Experimental Study for the Optimum Conditions of Painting Using Phase Doppler Particle Analyzer (PDPA를 이용한 도장의 최적 조건에 관한 실험)

  • 황승식;김종철;하옥남;전운학;정회원
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.4
    • /
    • pp.1-20
    • /
    • 1997
  • The automotive industry as the major industry of the nation has affected both society and economy since the automobile was invented, and the main technique that help to performance improvement of the automobile has been developed. But, the painting technique lags behind the main technique of the automobile because that was neglected. Specially, we can say that in case of the painting technique of the automobile of our nation is so weak situation. After we changed the injecting pressure, the composition ratio (paint, hardener, thinner) and the injecting flow rate from spray-gun by PDPA, we studied the character of the injecting velocity and droplet size, and found the fittest condition. So, we got the following result to help mending paint technique of automobile surface. We could know the following fact from the experiment result. When it does mending paint of automobile, there is most suitable that to inject the paint as injecting pressure 200∼300 kPa and to inject the ratio of paint 10 : 1 : 1 when the fluid adjective knob valve spay-gun is open full.

  • PDF

EFFECTS OF HEAT EXPOSURE ON WATER METABOLISM AND PASSAGE IN SHEEP

  • Katoh, K.;Buranakarl, C.;Matsunaga, N.;Lee, S.R.;Sugawara, T.;Sasaki, Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.2 no.2
    • /
    • pp.91-97
    • /
    • 1989
  • The present experiment was carried out to investigate the effects of heat exposure on water metabolism and the passage of indigestible particles in sheep. Water intake, respiratory rate, rectal temperature and pH of ruminal fluid and urine were significantly higher (P<0.05) in the hot environment ($32\;^{\circ}C$) than in the control environment ($20\;^{\circ}C$). Urine osmolality and blood volume were increased, while glomerular filtration rate was decreased, in the hot environment. The liquid flow rate from reticulo-rumen and the excretion of indigestible particles of specific gravity 0.99 (but not 1.27 or 1.38) were increased in the hot environment. From these findings, it is suggested that an increased water intake evoked by heat exposure might affect the flow rate of digesta in sheep.

A CFD Study of Near-field Odor Dispersion around a Cubic Building from Rooftop Emissions

  • Jeong, Sang Jin
    • Asian Journal of Atmospheric Environment
    • /
    • v.11 no.3
    • /
    • pp.153-164
    • /
    • 2017
  • Odor dispersion around a cubic building from rooftop odor emissions was investigated using computational fluid dynamics (CFD). The Shear Stress Transport (here after SST) $k-{\omega}$ model in FLUENT CFD code was used to simulate the flow and odor dispersion around a cubic building. The CFD simulations were performed for three different configurations of cubic buildings comprised of one building, two buildings or three buildings. Five test emission rates were assumed as 1000 OU/s, 2000 OU/s, 3000 OU/s, 4000 OU/s and 5000 OU/s, respectively. Experimental data from wind tunnels obtained by previous studies are used to validate the numerical result of an isolated cubic building. The simulated flow and concentration results of neutral stability condition were compared with the wind tunnel experiments. The profile of streamline velocity and concentration simulation results show a reasonable level of agreement with wind tunnel data. In case of a two-building configuration, the result of emission rate 1000 OU/s illustrates the same plume behavior as a one-building configuration. However, the plume tends to the cover rooftop surface and windward facet of a downstream building as the emission rate increases. In case of a three-building configuration, low emission rates (<4000 OU/s) form a similar plume zone to that of a two-building configuration. However, the addition of a third building, with an emission rate of 5000 OU/s, creates a much greater odorous plume zone on the surface of second building in comparison with a two-building configuration.

Effects of Ethyl Alcohol on Urinary Constituents after Sweating (발한후 음주가 뇨성분(尿成分)에 미치는 영향)

  • Chung, Kwan-Ho;Shin, Dong-Hoon
    • The Korean Journal of Physiology
    • /
    • v.2 no.1
    • /
    • pp.73-78
    • /
    • 1968
  • The changes of urinary excretion after alcohol drinking on 6 normal subjects sweated in a hot chamber were studied. The results are summarized as follows: 1. The urinary minute flow is increased rapidly to maximum about 60 minutes after intake of alcohol, and this is supposed to be originated from the antidiuretic suppressive action on osmoreceptor by ethyl alcohol. 2. Free water clearance and osmolarity of the urine showed the maximal and minimal values respectively at the sane time when the urinary flow is maximal. 3. The concentrations of Na, K and Cl were roughly proportionate to the urinary osmolarity and the minimal values after drinking were diluted to more than 10-fold than those before drinking, but the minute amounts of these ions is decreased only slightly during tile diuresis. 4. The concentrations of urea were decreased less than 10-fold but the minute amounts were rather increased slightly. 5. The diuresis could not excrete whole quantity of fluid intake in the period of 2 hours, and considerable amount of water was still retained in the body.

  • PDF