• Title/Summary/Keyword: flowrate coefficient

Search Result 59, Processing Time 0.022 seconds

Estimation of Head Loss Coefficient Empirical Formulas Using Model Experimental Results in a 90° Angle Dividing Channel Junction (90도 각도를 갖는 분기수로에서 모형실험결과를 이용한 손실계수 경험식 산정)

  • Park, Inhwan;Seong, Hoje;Kim, Hyung-Jun;Rhee, Dong Sop
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.6
    • /
    • pp.989-999
    • /
    • 2017
  • In this study, hydraulic experimental studies were conducted to estimate the empirical formulas of loss coefficient, which is necessary to calculate the energy loss occurred in the dividing channel junction of sewer system. The experimental apparatus was consisted of two outflow conduit with a $90^{\circ}$ angle to the inlet conduit, and the pressure and velocity heads are measured to analyze the energy losses in the branch. The measurements of the hydraulic grade line show that the hydraulic grade line was steeply descended at the dividing point due to the head loss, and the decreasing amount of velocity head increased with the increase of flowrate ratio. The head loss exponentially increased in the outlet with larger runoff as the increase of flowrate ratio and Froude number, and the head loss coefficient also increased. On the other hands, the head loss coefficients decreased in the outlet with smaller runoff as the increase of the flowrate ratio and Froude number. Using the experimental results, the empirical formulas of loss coefficient was suggested for each outlet, and the error of empirical formula was 3.91 and 5.19%, respectively. Furthermore, the total head loss coefficient calculated by the two empirical formulas was compared with the experimental results, and the error was 3.62%.

Correlation Analysis between Groundwater Level and Baseflow in the Geum River Watershed, Calculated using the WHAT SYSTEM (금강 유역의 지하수위와 WHAT SYSTEM을 통하여 산정된 기저유출과의 상관관계 분석)

  • Yang, Jeong-Seok;Chi, Dong-Keun
    • The Journal of Engineering Geology
    • /
    • v.21 no.2
    • /
    • pp.107-116
    • /
    • 2011
  • Groundwater level data and flowrate data were collected by considering the distance between the groundwater-level gauge station and flowrate gauge station (< 10 km) in the Geum River watershed, Baseflow was separated from the collected flowrate data using the WHAT SYSTEM, which is a Web- and GIS-based tool developed for hydrological applications, Correlation analysis was performed for the separated baseflow and groundwater-level data collected from a site close to the flowrate gauge station, Twenty regions were selected and data sets were collected from 2002 to 2008. Twelve regions yielded a correlation coefficient of > 0.5, When the data sets were analyzed for each year for all 20 regions, we obtained a correlation coefficient of 0.5-0.6 for 8 cases, 0.6-0.7 for 5 cases, and > 0.7 for 12 cases. For individual regions, the correlation coefficient varied from year to year. There was a tendency toward weak correlation in the case of drought or flood, Therefore, under normal conditions (i.e., neither flood nor severe drought), it is possible to estimate the baseflow from nearby groundwater-level data for regions with a high correlation coefficient.

Treatment of Food Waste Leachate using Pure-Oxygen Jet Loop Reactor(JLR) (순산소 Jet 폭기 시스템을 이용한 음폐수 처리 특성)

  • Yoon, Ae-Hwa;Park, Noh-Back;Bae, Jong-Hun;Jun, Hang-Bae;Kwon, Young-Bae
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.6
    • /
    • pp.763-773
    • /
    • 2010
  • The removal efficiencies and a total oxygen transfer coefficient for food waste leachate(FWL) were estimated by using Jet Loop Reactor(JLR). Pure oxygen was used instead of air to improve oxygen concentration in the JLR for high total chemical oxygen demamd(TCOD) in FWL. In JLB, in order to examining the oxygen transfer characteristic, the circulation flowrate and oxygen flowrate were controlled with 7~10 L/min(1.5 L/min interval) and 0.2~0.5 L/min (0.1 L/min interval) and we experimented according to the each condition. As a result, Oxygen uptake rate(OUR) and oxygen transfer rate could be maximized than the oxygen flowrate to increase the circulation flowrate. In addition, it determined that JLR using the pure oxygen which can obtain the greatest oxygen transfer rate as it was the high-concentration organic wastewater like the food waste leachate through the continuous experiment was appropriate.

Applications of Graph Theory for the Pipe Network Analysis (상수관망해석을 위한 도학의 적용)

  • Park, Jae-Hong;Han, Geon-Yeon
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.4
    • /
    • pp.439-448
    • /
    • 1998
  • There are many methods to calculate steady-state flowrate in a large water distribution system. Linear method which analyzes continuity equations and energy equations simultaneously is most widely used. Though it is theoretically simple, when it is applied to a practical water distribution system, it produces a very sparse coefficient matrix and most of its diagonal elements are to be zero. This sparsity characteristic of coefficient matrix makes it difficult to analyze pipe flow using the linear method. In this study, a graph theory is introduced to water distribution system analysis in order to prevent from producing ill-conditioned coefficient matrix and the technique is developed to produce positive-definite matrix. To test applicability of developed method, this method is applied to 22 pipes and 142 pipes system located nearby Taegu city. The results obtained from these applications show that the method can calculate flowrate effectively without failure in converage. Thus it is expected that the method can analyze steady state flowrate and pressure in pipe network systems efficiently. Keywords : pipe flow analysis, graph theory, linear method.

  • PDF

A Study on Prediction Model of Flow and Heat Transfer in the Circulating Fluidized Bed Heat Exchanger with Multiple Vertical Tubes (다관형 순환유동층 열교환기의 유동 및 전열성능 예측모델 연구)

  • Park, Sang-Il
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.1199-1204
    • /
    • 2006
  • The pressure drop and heat transfer coefficient were measured at room temperature in CFB heat exchanger with multiple vertical tubes. Also the circulation rate of solid particles was measured. The theoretical model for predicting heat transfer coefficient using the solid flowrate was developed in this study. The model predictions were compared with the measured heat transfer coefficient to show relatively good agreement.

  • PDF

A Study on the Three-Dimensional Turbulent Flour Characteristics of a Small-sized Axial Fan at the Maximum Flowrate Region (최대유량역에서 소형 축류 홴의 3차원 난류유동 특성에 관한 연구)

  • Kim, J.K.
    • Journal of Power System Engineering
    • /
    • v.4 no.3
    • /
    • pp.25-33
    • /
    • 2000
  • This study represents three-dimensional turbulent flow characteristics around an axial fan measured at the operating point ${\varphi}=0.32$, which is equivalent to the maximum flowrate region, by using three-dimensional fiber-optic type LDA system. This LDA system is composed of a 5 W Argon-ion laser, two optics in back-scatter mode, three BSA's, a PC, and a three-dimensional automatic traversing system. A kind of paraffin fog is used for laser particles in this study. Mean velocity profiles around an axial fan along the downstream radial distance show that the streamwise and the tangential components exist as a predominant velocity and have the maximum value at the radial distance ratio 0.8, while the radial component has a small scale distribution and its flow direction is inward except a part of blade tip. The turbulent intensity profiles show that the radial component exists the most greatly. And also the turbulent kinetic energy shows about 60% as a maximum value at the radial distance ratio 0.9. Moreover, the Reynolds shear stresses do not exist at upstream flow, but the streamwise and the radial components of them show about 20% as a maximum value at the radial distance ratio 0.9 at downstream flow.

  • PDF

An Experimental Study on the Characteristics of the In-cylinder Eccentricity Swirl Flow with Intake Port Shapes in a 4 Valve Diesel Engine (4밸브 디젤기관의 흡기포트 형상에 따른 실린더 내 편심 선회유동 특성에 관한 실험적 연구)

  • 이지근;김덕진;강신재;노병준
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.1
    • /
    • pp.59-72
    • /
    • 1998
  • This experimental study was carried out to investigate the characteristics of the in-cylinder eccentricity swirl flow generated by a 4 valve cylinder head with a tangential and a helical intake port. the measurements of the in-cylinder velocity field have been made by a two-channel LDA system. The mean flow coefficient(Cf(meam)), swirl ratio(Rs) and mass flowrate with valve eccentricity ratios and an intake port partition between the two intake ports were measured in the steady flow test fig using the ISM(impulse swirl meter). The experimental results indicated that the mass flowrate through the tangential intake port was 19% and 7.7% more than that of the helical intake port in case of with and without intake port partition respectively. There was a tendency to be a single rotation flow in swirl flow fields formed by a 4 valve cylinder head because of the interaction between the two intake ports. As the intake port partition was not set between flow coefficient(Cf(mean)) was 7.35%.

Comparison of Overall Oxygen Transfer Coefficient in the Membrane Coupled High Performance Reactor for a High Organic Loading Wastewater Treatment (고부하 유기성 폐수처리를 위한 분리막 결합형 순산소 고효율 포기장치의 총괄 산소전달효율 평가)

  • Kang, Bum-Hee;Lim, Kyeong-Ho;Lee, Sang-Min
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.1
    • /
    • pp.81-88
    • /
    • 2010
  • This study was conducted to find the capability of comparison of overall oxygen transfer coefficient in the membrane coupled high performance reactor (MPHCR) in treating high organic loading wastewater. Effluent quality had been analyzed while the influent organic loading rate was changed from 2 to $7kg\;COD/m^3{\cdot}day$. The oxygen transfer coefficients had been investigated using two-phase nozzle for operating variables which were internal circulation flowrate (5~8 L/min), air flow rate (0.0125~0.2 L/min), liquid temperature ($10{\sim}20^{\circ}C$), and pure-oxygen flow rate (0.0125~0.2 L/min). The overall oxygen transfer coefficient was increased with flowrate of internal circulation and air and high temperature. Especially, internal circulation flow rate showed distinct effect on overall oxygen transfer coefficient due to an increase of gas holdup and air-liquid contract area by two-phase nozzle. In the high range of organic loading rate from 4 to $7kg\;COD/m^3{\cdot}day$, the removable efficiency of COD was 91%. Conventional activated sludge process usually treat organic loading from 0.32 to $0.64kg\;COD/m^3{\cdot}day$ however, the MPHCR can treat 10 to 20 times higher if it would be compared to the conventional activated sludge process. Foaming problem often happened and caused biomass wash out of the reactor, therefore, the foaming should be controlled for the enhanced operation.

The Effect of Pressure on Viscosity in Grooved Hydraulic Spool Valves (압력에 따른 점도변화가 그루브를 한 유압 스푸울 밸브에 미치는 영향)

  • Park, Tae-Jo
    • Tribology and Lubricants
    • /
    • v.22 no.6
    • /
    • pp.307-313
    • /
    • 2006
  • In this paper, a theoretical analysis is carried out to study the effect of viscosity variation with pressure in multiply grooved moving hydraulic spool valves. Analytical expressions for pressure distribution in the clearance and leakage flowrate are obtained solving one-dimensional Reynolds. For constant viscosity, an analytical expression for lateral force is also presented. The results showed that variation of viscosity with pressure affect highly on pressure distribution, leakage flowrate and lateral forces in hydraulic spool valves. Therefore additional intensive studies, including numerical analysis for two-dimensional Reynolds, should be required to investigate detailed lubrication characteristics of spool valves for high pressure.

A Study on the Characteristics of the Refrigerator Using a Refrigerant Injection Type Expansion Device (냉매분사식 팽창장치를 적용한 냉동기의 특성에 관한 연구)

  • 조병옥
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.10
    • /
    • pp.925-931
    • /
    • 2000
  • Refrigerating ability of vapor compression refrigerator is decided by the harmonic work of it's components such as compressor, condenser, evaporator, expansion device, and so on. In this study, choosing refrigerant injectors as a new one of expansion device, temperature change of the cold room, ice freezing ability, and power consumption on flowrate of injector and refrigerant charging condition are evaluated experimentally. As the results of this study, it is verified that the spray injection type refrigeration system has some merits according to the flowrate and spray pattern of injector and charging quantum of refrigerant. And there are some design factors such as spray pattern and shape of spray chamber to utilize and fabricate this refrigerant injection type refrigerator.

  • PDF