• Title/Summary/Keyword: flowering plants

Search Result 554, Processing Time 0.024 seconds

Expression of Proteinase Inhibitor II gene in Transgenic Flowering Cabbage, Brassica oleracea var. acephala DC. (형질전환된 꽃양배추에서 Proteinase Inhibitor II 유전자의 발현)

  • 김창길;정재동
    • Korean Journal of Plant Tissue Culture
    • /
    • v.25 no.2
    • /
    • pp.95-98
    • /
    • 1998
  • Hypocotyl explants of flowering cabbage were cocultured with Agrobacterium tumefaciens LBA4404;;pGA875 harboring proteinase inhibitor II(PI-II) cDNA and then regenerated into plants. Sucessful transcripts of PI-II gene were detected by RNA dot blot analysis. Bioassay was conducted on transgenic flowering cabbage. It was confirmed that insecticidal activities of transformants were much higer than that of control plants. In progeny test of hansformants, 27.4% of T$_1$ seeds was resistant on MS medium containing 20 mg/L kanamycin.

  • PDF

Effect of Night Interruption with Mist and Shade Cooling Systems on Subsequent Growth and Flowering of Cymbidium 'Red Fire' and 'Yokihi'

  • Kim, Yoon Jin;Kim, Ki Sun
    • Horticultural Science & Technology
    • /
    • v.32 no.6
    • /
    • pp.753-761
    • /
    • 2014
  • Growth and flowering of Cymbidium 'Red Fire' and 'Yokihi' plants were examined in a greenhouse with cooling systems in summer, and with night interruption (NI) lighting in winter as a forcing culture system. The greenhouse was divided into two sections with separate cooling controls during the summer season. One section was cooled by a mist system (mist), while the other section was cooled by a shade screen (shade). During the winter, the greenhouse was redivided into three sections within each cooling system. Plants were grown with NI either at a low light intensity of $3-7{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$(LNI) or a high l ight intensity of $120{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$(HNI) u sing h igh-pressure sodium l amps during the 22:00-02:00 HR. The control plants were grown under 9 h short-day condition. NI for 16 weeks and cooling for 9 weeks were employed twice during the 2 years of the experimental period. The air temperature was approximately $2^{\circ}C$ lower in the mist than in the shade and the relative humidity was 80 ${\pm}5%$ in the mist compared to $55{\pm}5%$ in the shade. The daily light integral in the mist section was 48% higher than in the shade section. The time from initial planting to flowering pseudobulb emergence decreased with both LNI and HNI for both cultivars, regardless of the cooling treatments. Under NI conditions, however, between 60% and 1 00% of plants of both cultivars flowered in the mist, whereas no or 20% of 'Red Fire' or 'Yokihi' plants, respectively, flowered in the shade treatment over 2 years. Plants grown under the mist had bigger pseudobulbs than those grown in the shade under both NI treatments. These results show that commercial use of NI in winter and a mist cooling system in summer would decrease crop production time to 2 years and increase profits in Cymbidium forcing culture.

OsAREB1, an ABRE-binding protein responding to ABA and glucose, has multiple functions in Arabidopsis

  • Jin, Xiao-Fen;Xiong, Ai-Sheng;Peng, Ri-He;Liu, Jin-Ge;Gao, Feng;Chen, Jian-Min;Yao, Quan-Hong
    • BMB Reports
    • /
    • v.43 no.1
    • /
    • pp.34-39
    • /
    • 2010
  • Expression patterns of OsAREB1 revealed that expression of OsAREB1 gene can be induced by ABA, PEG and heat. Yeast one-hybrid assay demonstrated it can bind to ABA-responsive element (ABRE), which was found in most stress-induced genes. Transgenic Arabidopsis over-expressing OsAREB1 had different responses to ABA and glucose compared to wild-type plants, which suggest OsAREB1 might have a crucial role in these two signaling pathways. Further analysis indicate that OsAREB1 have multiple functions in Arabidopsis. First, OsAREB1 transgenic plants had higher resistance to drought and heat, and OsAREB1 up-regulated the ABA/stress related gene such as RD29A and RD29B. Second, it delayed plant flowering time by down-regulating the expression of flowering-related genes, such as FT, SOC1, LFY and AP1. Due to the dates, OsAREB1 may function as a positive regulator in drought/heat stresses response, but a negative regulator in flowering time in Arabidopsis.

The Ralstonia pseudosolanacearum Type III Effector RipL Delays Flowering and Promotes Susceptibility to Pseudomonas syringae in Arabidopsis thaliana

  • Wanhui Kim;Hyelim Jeon;Hyeonjung Lee;Kee Hoon Sohn;Cecile Segonzac
    • Molecules and Cells
    • /
    • v.46 no.11
    • /
    • pp.710-724
    • /
    • 2023
  • The plant defense responses to microbial infection are tightly regulated and integrated with the developmental program for optimal resources allocation. Notably, the defense-associated hormone salicylic acid (SA) acts as a promoter of flowering while several plant pathogens actively target the flowering signaling pathway to promote their virulence or dissemination. Ralstonia pseudosolanacearum inject tens of effectors in the host cells that collectively promote bacterial proliferation in plant tissues. Here, we characterized the function of the broadly conserved R. pseudosolanacearum effector RipL, through heterologous expression in Arabidopsis thaliana. RipL-expressing transgenic lines presented a delayed flowering, which correlated with a low expression of flowering regulator genes. Delayed flowering was also observed in Nicotiana benthamiana plants transiently expressing RipL. In parallel, RipL promoted plant susceptibility to virulent strains of Pseudomonas syringae in the effector-expressing lines or when delivered by the type III secretion system. Unexpectedly, SA accumulation and SA-dependent immune signaling were not significantly affected by RipL expression. Rather, the RNA-seq analysis of infected RipL-expressing lines revealed that the overall amplitude of the transcriptional response was dampened, suggesting that RipL could promote plant susceptibility in an SA-independent manner. Further elucidation of the molecular mechanisms underpinning RipL effect on flowering and immunity may reveal novel effector functions in host cells.

Studies on Inhibition Factors and the Role of Phytochrome in the Floral Induction in Short-day Plants (단일식물의 개화유도를 조절하는 개화억제요소의 규명과 Phytochrome의 역할에 관한 연구)

  • 맹주선
    • Journal of Plant Biology
    • /
    • v.19 no.1
    • /
    • pp.14-18
    • /
    • 1976
  • Inhibition of flowering in Lemna perpusilla 6746 by 30 mM sucrose was reversed by the addition of acetylcholine (>$10^{-4}M) supplemented with 10^{-4}M$ ascorbic acid to 1/10-strength Hunter's growth medium. The reversible effect of acetylcholine was found to be greater at early stages of flowering than in the later period. Promotive effects of both acetylcholine ($10^{-3}M) and eserine(10^{-5}M$) on flowering in the short-day plant under various photoperiodic conditions were studied. It was indicated that the application decreased length of the critical dark period for the floral induction, and it was also shown that the endogenous status of acetylcholine was involved in the floral response which had a correlation with phytochrome. Interruption of inductive dark periods by red irradiation (1min) immediately followed by far-red light (1 min) completely inhibited flowering, while the addition of acetylcholine and eserine to the medium under the same condition slightly promoted flowering, indicating possible involvement of phytochrome system in acetylcholine activity for photoperiodic sensitivity of floral response in Lemna perpusilla 6746.

  • PDF

New records of flowering plants of the flora of Myanmar collected from Natma Taung National Park (Chin State)

  • Kang, Dae-Hyun;Ling, Shein Man;Kim, Young-Dong;Ong, Homervergel G.
    • Korean Journal of Plant Taxonomy
    • /
    • v.47 no.3
    • /
    • pp.199-206
    • /
    • 2017
  • The last four years of joint botanical collections by the governments of Myanmar and South Korea in Natma Taung National Park and adjacent areas in the Chin State of Myanmar have revealed the presence of 20 naturally occurring species of angiosperms new to the flora of Myanmar. Plants not previously recorded include species originally considered to be only found in neighboring mega-diverse countries. Examples (e.g., for India) include Boehmeria manipurensis Friis & Wilmot-Dear (Urticaceae), Trigonotis hookeri Benth. ex C. B. Clarke (Boraginaceae) and Mycetia radiciflora (C. B. Clarke) Airy Shaw (Rubiaceae); those for China include Microtoena delavayi Prain (Lamiaceae), Pimpinella kingdon-wardii H. Wolff (Apiaceae) and Senecio diversipinnus Y. Ling (Asteraceae). The data presented in this report are expected to be useful sources for phytogeographical studies of these species.

Physiological Character of Juvenility in Higher Plant (고등식물체에서 유년기의 생리적 특성)

  • 양덕조
    • Proceedings of the Botanical Society of Korea Conference
    • /
    • 1987.07a
    • /
    • pp.191-211
    • /
    • 1987
  • Common usage of the concept of juvenility implies that there is one physiological phase, the juvenile phase, which manifests itself in the various morphological and physiological phenomena observed in juvenile higher plants. The juvenile phase is often defined as that time from seed germination until the plant attains the ability to flower regulating such behaviour. This definition precludes plants from flowering in the juvenile phase. It is of major interest, therefore, to identify the physiological controls(Bluehreife) regulating such behavior. The length of the juvenile period in higher plants ranges from one year to over 60 years in different species. The long juvenile period of seedling is the main cause of the long duration of the breeding process. I determined the length of the juvenile period in various plants and its control of phase changes in natural system in relation to factors such as plant size and age, shoot morphology, apex size, root system and phytohormonal and nutritional status is reviewed. From the own experimental and observational evidence available it appears that both hormonal and nutritional factors can be involved in control of juvenility but that a specific juvenile or flowering hormone is not involved. Grafting, ringing, scoring, root pruning and fertilization have been used to accelerate flowering, but in most cases these cultured treatments are only successful on plants that were passed the juvenile phase. It is suggested that there are intrinsic difference between the meristematic cells of the apieces of juvenile and adult shoot, which are thus determined with respect to there development potentialities. The problems associated with the maintenance of the determined state through mitosis are discussed. The properties of transitional forms of Ribes nigrum L. intermediate between the juvenile and adult phase, are descrived and there implications discussed. Analogies are drawn between juvenile phenomena in woody perennials and in herbaceous species.

  • PDF

Stem Firmness and Flowering Response of Cut Lilies as Influenced by Medium Composition in Box Culture

  • Suh, Jeung-Keun
    • Proceedings of the Korean Society for Bio-Environment Control Conference
    • /
    • 2001.04b
    • /
    • pp.45-50
    • /
    • 2001
  • Stem firmness and flowering response of cut lily as influenced by medium composition (Control: Upland soil, Pt: Peatmoss, Pe: Perlite, Ve: Vermiculite, Rrh: Rotted rice-hull, RPt: Russian Peatmoss) were studied. For 'Casa Blanca', plant height and length of flower stalk increased when bulbs were planted in Pt:Rrh:Ve(1:1:1, v/v), and dried leaves of lower part plants decreased by RPt:Pe:Rrh(1:1:1, v/v). In case of 'Marco Polo' plant height and length of flower stalk increased with Pt:Rrh(1:1, v/v) as compared to other treatment, number of leaves and dried leaves increased when bulbs were planted in RPt:Pe:Rrh(1:1:1, v/v) as compared to control. Flowering of 'Casa Blanca' was promoted in Pt:Pe:Ve(1:1:1, v/v) and 'Marco Polo' was accelerated in Pt:Rrh:Ve(1:1:1, v/v). Flower length of 'Casa Blanca' was increased by RPt:Pe:Rrh(1 :1 :1, v/v) as compared with control and 'Marco Polo' was increased when bulbs planted to Pt:Rrh(1 :1, v/v). Flower-bud blasting of two cultivars was increased with Pt as compared with other treatment. Stem firmness of 'Casa Blanca' was increased by Pt:Pe:Ve (1:1 :1, v/v), and especially, stem firmness of upper part plants was increased by Pt:Rrh(1 :1, v/v) in 'Marco Polo' as compared to control plants. but generally, stem firmness of 'Casa Blanca' was not influenced with all cultural media as compared to control.

  • PDF

Application of plasma lighting for growth and flowering of tomato plants

  • Park, Kyoung Sub;Kim, Sung Kyeom;Lee, Sang Gyu;Lee, Hee Ju;Kwon, Joon Kook
    • Horticulture, Environment, and Biotechnology : HEB
    • /
    • v.59 no.6
    • /
    • pp.827-833
    • /
    • 2018
  • Plasma lighting systems have been engineered to simulate sunlight. The objective of this study was to determine the effects of plasma lighting on tomato plant growth, photosynthetic characteristics, flowering rate, and physiological disorders. Tomato plants were grown in growth chambers at air temperatures of $25/23^{\circ}C$ (light/dark period), in a $16h\;day^{-1}$ light period provided by four different light sources: 1 kW and 700 W sulfur plasma lights (1 SPL and 0.7 SPL), 1 kW indium bromide plasma light, and 700 W high pressure sodium lamp (0.7 HPS) as a control. The totaldry weight and leaf area at 0.7 SPL were approximately 1.2 and 1.3 times greater, respectively, than that of 0.7 HPS at the 62 days after sowing (DAS). The maximum light assimilation rate was observed at 1 SPL at the 73 DAS. In addition, the light compensation and saturation points of the plants treated with plasma lighting were 98.5% higher compared with HPS. Those differences appeared to be related to more efficient light interception, provided by the SPL spectrum. The percentage of flowering at 0.7 SPL was 30.5%, which was higher than that at 0.7 HPS; however, there were some instances of severe blossom end rot. Results indicate that plasma lighting promotes tomato growth, flowering, and photosynthesis. Therefore, a plasma lighting system may be a valuable supplemental light source in a greenhouse or plant factory.

Some Progress on Chemical Studies of Chinese Medicinal Plants

  • Qin, Guo-Wei
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1998.11a
    • /
    • pp.88-88
    • /
    • 1998
  • China is rich in plant resources of various species. There are more than 3000 kinds of flowering plants distributed widely in the country. Throughout China's long history, many plants have been using for treatment of various diseases and playing very important role to support social civilization and prosperity. As present understanding, Chinese medicinal plants are rich sources of discovering and developing new natural drugs and lead compounds in China. To make the use of Chinese medicinal plants more scientific and more rational, its fundamental research should be strengthened, including studies on chemical constituents, pharmacological effects and its action mechanism.

  • PDF