• Title/Summary/Keyword: flow structures

Search Result 2,218, Processing Time 0.029 seconds

3-D characteristics of conical vortex around large-span flat roof by PIV technique

  • Sun, Huyue;Ye, Jihong
    • Wind and Structures
    • /
    • v.22 no.6
    • /
    • pp.663-684
    • /
    • 2016
  • Conical vortices generated at the corner regions of large-span flat roofs have been investigated by using the Particle Image Velocimetry (PIV) technique. Mean and instantaneous vector fields for velocity, vorticity, and streamlines were measured at three visual planes and for two different flow angles of $15^{\circ}$. The results indicated that conical vortices occur when the wind is not perpendicular to the front edge. The location of the leading edge corresponding to the negative peak vorticity and maximum turbulent kinetic energy was found at the center of the conical vortex. The wind pressure reaches the maximum near the leading edge roof corner, and a triangle of severe suctions zone appears downstream. The mean pressure in uniform flow is greater than that under turbulent flow condition, while a significant increase in the fluctuating wind pressure occurs in turbulent streams. From its emergence to stability, the shape of the vortex cross-section is nearly elliptical, with increasing area. The angle that forms between the vortex axis and the leading edge is much smaller in turbulent streams. The detailed flow structures and characteristics obtained through FLUENT simulation are in agreement with the experimental results. The three dimensional (3-D) structure of the conical vortices is clearly observed from the comprehensive arrangement of several visual planes, and the inner link was established between the vortex evolution process, vortex core position and pressure distribution.

Experimental and Computational Investigation of Wind Flow Field on a Span Roof Structure

  • K B Rajasekarababu;G Vinayagamurthy;Ajay Kumar T M;Selvirajan S
    • International Journal of High-Rise Buildings
    • /
    • v.11 no.4
    • /
    • pp.287-300
    • /
    • 2022
  • Unconventional structures are getting more popular in recent days. Large-span roofs are used for many structures, such as airports, stadiums, and conventional halls. Identifying the pressure distribution and wind load acting on those structures is essential. This paper offers a collaborative study of computational fluid dynamics (CFD) simulations and wind tunnel tests for assessing wind pressure distribution for a building with a combined slender curved roof. The hybrid turbulence model, Improved Delayed Detached Eddy Simulation (IDDES), simulates the open terrain turbulent flow field. The wind-induced local pressure coefficients on complex roof structures and the turbulent flow field around the structure were thus calculated based upon open terrain wind flow simulated with the FLUENT software. Local pressure measurements were investigated in a boundary layer wind tunnel simultaneous to the simulation to determine the pressure coefficient distributions. The results predicted by CFD were found to be consistent with the wind tunnel test results. The comparative study validated that the recommended IDDES model and the vortex method associated with CFD simulation are suitable tools for structural engineers to evaluate wind effects on long-span complex roofs and plan irregular buildings during the design stage.

Spanwise growth of coherent structures in turbulent pipe flow (난류 파이프 유동 내 응집 구조의 횡 방향 성장)

  • Ahn, Junsun;Lee, Jinyoung;Hwang, Jinyul
    • Journal of the Korean Society of Visualization
    • /
    • v.19 no.2
    • /
    • pp.26-31
    • /
    • 2021
  • The spanwise growth of turbulence structures in turbulent pipe flow was investigated using the direct numerical simulation data of Re𝜏 = 544, 934 and 3008. Two-point correlations and pre-multiplied energy spectra of streamwise velocity fluctuations were examined along the spanwise direction. The arclength direction is defined as r𝛳, which is useful for an analogy with the spanwise direction for channels or boundary layers; here, r and 𝛳 are the radial distance from the core and the azimuthal angles, respectively. Both analyses showed that the arclength scales increased with increasing the wall-normal distance. It showed that the coherent structures were confined in the core region due to the crowding effect of a circular pipe geometry. The pipe flow simulation could describe a realistic geometrical flow along the azimuthal direction, unlike the simulations of turbulent channel or boundary layer flow using periodic boundary conditions along the spanwise direction. The present results provided the spanwise organization of energy-containing motions over a broad range of scales in turbulent pipe flow.

Correlation analysis of the wind of a cable-stayed bridge based on field monitoring

  • Li, Hui;Laima, Shujin;Li, Na;Ou, Jinping;Duan, Zhondong
    • Wind and Structures
    • /
    • v.13 no.6
    • /
    • pp.529-556
    • /
    • 2010
  • This paper investigates the correlation of wind characteristics monitored on a cable-stayed bridge. Total five anemoscopes are implemented into the bridge. Two out of 5 anemoscopes in inflow and two out of 5 anemoscopes in wake-flow along the longitudinal direction of the bridge are installed. Four anemoscopes are respectively distributed at two cross-sections. Another anemoscope is installed at the top of the tower. The correlation of mean wind speed and direction, power spectral density, the turbulent intensity and integral length of wind in flow at two cross-sections are investigated. In addition, considering the non-stationary characteristics of wind, the spatial correlation in time-frequency is analyzed using wavelet transform and different phenomenon from those obtained through FFT is observed. The time-frequency analysis further indicates that intermittence, coherence structures and self-similar structures are distinctly observed from fluctuant wind. The flow characteristics around the bridge deck at two positions are also investigated using the field measurement. The results indicate that the mean wind speed decrease when the flow passing through the deck, but the turbulence intensity become much larger and the turbulence integral lengths become much smaller compared with those of inflow. The relationship of RMS (root mean square) of wake-flow and the mean wind speed of inflow is approximately linear. The special structures of wake-flow in time-frequency domain are also analyzed using wavelet transform, which aids to reveal the forming process of wake-flow.

Numerical Modeling of Wave-Type Flow on a Stepped Weir (계산형 위어에서의 파형흐름 수치모의)

  • Paik, Joongcheol;Kang, Joon Gu;Lee, Nam-Ju
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.65-65
    • /
    • 2016
  • Various types of flow conditions are developed in the region just downstream of hydraulic structures such as weir and drop structures. One of distinct flow conditions occurred downstream of drop structures is the wave type flow with undular hydraulic jump formation. We present three-dimensional numerical simulations of a wave type flow formed downstream of a stepped weir which were experimentally investigated by Kang et al. (2010). The turbulent flow over the weir structure is modeling using the unsteady Reynolds-averaged Navier-Stokes (URANS) simulation employing the Spalart-Allmaras one equation model and the detached eddy simulation. Numerical modeling and the performance of turbulence modeling approaches are evaluated by comparing with the experimental measurements in terms of the free surface variation, the shapes and sizes of undular wave, roller near at free surface, recirculation zone near the channel bottom downstream of the structures, and streamwise velocity profiles at selected longitudinal locations.

  • PDF

Pressure and velocity fluctuations in the atmospheric boundary layer

  • Sterling, M.;Baker, C.J.;Quinn, A.D.;Hoxey, R.P.
    • Wind and Structures
    • /
    • v.8 no.1
    • /
    • pp.13-34
    • /
    • 2005
  • This paper presents an analysis of wind velocity and pressure data obtained in a rural environment with a view to identifying the vortex structures present within the flow and examining the relationship between pressure and dynamic pressure. The data is analysed using both conventional analysis and conditional sampling. A method examining the eigenvalues of a matrix formed by the addition of the square of the strain tensor and the square of the vorticity tensor is also investigated. This method illustrates that there are a number of vortex structures present in the flow. The work presented in this paper suggests that the extreme events occur as a result of the superposition of two independent mechanisms.

Energy flow finite element analysis of general Mindlin plate structures coupled at arbitrary angles

  • Park, Young-Ho
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.435-447
    • /
    • 2019
  • Energy Flow Finite Element Analysis (EFFEA) is a promising tool for predicting dynamic energetics of complicated structures at high frequencies. In this paper, the Energy Flow Finite Element (EFFE) formulation of complicated Mindlin plates was newly developed to improve the accuracy of prediction of the dynamic characteristics in the high frequency. Wave transmission analysis was performed for all waves in complicated Mindlin plates. Advanced Energy Flow Analysis System (AEFAS), an exclusive EFFEA software, was implemented using $MATLAB^{(R)}$. To verify the general power transfer relationship derived, wave transmission analysis of coupled semi-infinite Mindlin plates was performed. For numerical verification of EFFE formulation derived and EFFEA software developed, numerical analyses were performed for various cases where coupled Mindlin plates were excited by a harmonic point force. Energy flow finite element solutions for coupled Mindlin plates were compared with the energy flow solutions in the various conditions.

Vortex excitation model. Part I. mathematical description and numerical implementation

  • Lipecki, T.;Flaga, A.
    • Wind and Structures
    • /
    • v.16 no.5
    • /
    • pp.457-476
    • /
    • 2013
  • This paper presents theoretical background for a semi-empirical, mathematical model of critical vortex excitation of slender structures of compact cross-sections. The model can be applied to slender tower-like structures (chimneys, towers), and to slender elements of structures (masts, pylons, cables). Many empirical formulas describing across-wind load at vortex excitation depending on several flow parameters, Reynolds number range, structure geometry and lock-in phenomenon can be found in literature. The aim of this paper is to demonstrate mathematical background of the vortex excitation model for a theoretical case of the structure section. Extrapolation of the mathematical model for the application to real structures is also presented. Considerations are devoted to various cases of wind flow (steady and unsteady), ranges of Reynolds number and lateral vibrations of structures or their absence. Numerical implementation of the model with application to real structures is also proposed.

Large-Eddy Simulation of Turbulent Flow in a Concentric Annulus with Rotation of the Inner Cylinder (안쪽 실린더가 회전하는 동심 환형관 내 난류 유동의 대형와 모사)

  • Chung, Seo-Yoon;Sung, Hyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.4
    • /
    • pp.467-474
    • /
    • 2004
  • A large-eddy simulation is performed for turbulent flow in a concentric annulus with the inner wall rotation at Re$\sub$Dh/=8900 for three rotation rates N=0.2145, 0.429 and 0.858. Main emphasis is placed on the inner wall rotation effect on near-wall turbulent structures. Near-wall turbulent structures close to the inner wall are scrutinized by computing the lower-order statistics. The anisotropy invariant map for the Reynolds stress tensor and the invariant function are illustrated to reveal the altered anisotropy in turbulent structure. Probability density functions of the splat/anti-splat process are explored to develop a sufficiently complete picture of the contributions of the flow events to turbulent production. The present numerical results show that the altered turbulent structures may be attributed to the centrifugal instability, which leads to the augmentation of sweep and ejection events.

Vibration Power Flow Analysis of Submarine-shaped Structures using Developed Software

  • Seo, Seong-Hoon;Hong, Suk-Yoon
    • Journal of Ship and Ocean Technology
    • /
    • v.6 no.2
    • /
    • pp.1-11
    • /
    • 2002
  • For the analysis of vibrational energy density and intensity of partitioned complex system structures in medium-to-high frequency ranges, A software based on the Power Flow Analysis(PFA) has been developed for the plate elements. The flexural, longitudinal and shear waves in plates are formulated and the joint element equations for multi-coupled plates are fully developed. Also, the wave transmission approach has been introduced to cover the energy transmission and reflection at the joint plate elements. To confirm the validity of the developed PFA software, the submarine-shaped complex structures are used for the analysis of vibration intensity and energy density.