• Title/Summary/Keyword: flow sensor

Search Result 882, Processing Time 0.026 seconds

Characteristics of Flow Sensor Using PTC Thermistor (PTC 써어미스터를 이용한 유속센서의 특성)

  • Kwon, Hyuk-Joo;Lee, Yang-Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.3 no.3
    • /
    • pp.3-8
    • /
    • 1994
  • Flow sensor was fabricated with PTC thermistor usually operating as thermostats. The PTC thermistor was manufactured with $(Ba_{0.7}Sr_{0.3})TiO_{3}$ powder and its resistivity as a function of flow velocity was investigated. The resistivity changed from 4.45 $k{\Omega}{\cdot}cm$ to 3.95 $k{\Omega}{\cdot}cm$ as flow velocity varied 0 cm/s to 5 cm/s The sensitivities of the PTC thermistor were -204 (${\Omega}{\cdot}cm$)/(cm/s) and -24 (${\Omega}{\cdot}cm$)/(cm/s) at the flow velocity of 1 cm/s and 5 cm/s, respectively.

  • PDF

A Study on the Configuration of BOP and Implementation of BMS Function for VRFB (VRFB를 위한 BOP 구성 및 BMS 기능구현에 관한 연구)

  • Choi, Jung-Sik;Oh, Seung-Yeol;Chung, Dong-Hwa;Park, Byung-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.12
    • /
    • pp.74-83
    • /
    • 2014
  • This paper proposes a study on the configuration of balancing of plant(BOP) and implementation of battery management system(BMS) functions for vanadium redox flow battery(VRFB) and propose a method consists of sensor and required design specifications BOP system configuration. And it proposes an method of the functions implementation and control algorithm of the BMS for flow battery. Functions of BMS include temperature control, the charge and discharge control, flow control, level control, state of charge(SOC) estimation and a battery protection through the sensor signal of BOP. Functions of BMS is implemented by the sensor signal, so it is recognized as a very important factor measurement accuracy of the data. Therefore, measuring a mechanical signal(flow rate, temperature, level) through the BOP test model, and the measuring an electrical signal(cell voltage, stack voltage and stack current) through the VRFB charge-discharge system and analyzes the precision of data in this paper. Also it shows a good charge-discharge test results by the SOC estimation algorithm of VRFB. Proposed BOP configuration and BMS functions implementation can be used as a reference indicator for VRFB system design.

FuzzyGuard: A DDoS attack prevention extension in software-defined wireless sensor networks

  • Huang, Meigen;Yu, Bin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.7
    • /
    • pp.3671-3689
    • /
    • 2019
  • Software defined networking brings unique security risks such as control plane saturation attack while enhancing the performance of wireless sensor networks. The attack is a new type of distributed denial of service (DDoS) attack, which is easy to launch. However, it is difficult to detect and hard to defend. In response to this, the attack threat model is discussed firstly, and then a DDoS attack prevention extension, called FuzzyGuard, is proposed. In FuzzyGuard, a control network with both the protection of data flow and the convergence of attack flow is constructed in the data plane by using the idea of independent routing control flow. Then, the attack detection is implemented by fuzzy inference method to output the current security state of the network. Different probabilistic suppression modes are adopted subsequently to deal with the attack flow to cost-effectively reduce the impact of the attack on the network. The prototype is implemented on SDN-WISE and the simulation experiment is carried out. The evaluation results show that FuzzyGuard could effectively protect the normal forwarding of data flow in the attacked state and has a good defensive effect on the control plane saturation attack with lower resource requirements.

Paper-based Electrochemical Sensor Using a Self-operated Paper Pump (자발 구동형 종이 펌프를 이용한 종이 전기화학 센서)

  • Si Hiep Hua;Chikwan Kim;Duc Cuong Nguyen;Yong Shin Kim
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.3
    • /
    • pp.158-164
    • /
    • 2024
  • We developed a self-operated paper pump that can maintain a nearly constant flow rate of an aqueous solution along a paper strip channel in paper-based analytical devices (PADs). The quasi-stationary flow rate was controlled by increasing the crosssectional channel area (capillary force) using a fan-shaped absorption pad coupled with a paper strip channel. The flow rate is regulated by varying the fan angle of the circular absorbing pad. Furthermore, the flow rate can be increased by furnishing a hollow cavity at the center of a conventional paper strip channel. The rate was regulated by varying the length of the hollow paper channel in the flow rate range of 5.1-26.4 mm/min. As a preliminary work, a paper-pump-coupled PAD was fabricated, and its CV detection capability was evaluated for the redox reaction of Fe(CN)6+4/+3. The combination of a paper pump with a PAD resulted in an ideal CV curve with a higher limiting current and faster response time. These results are interpreted well by the Levich equation, which suggests that the paper pump is a very useful component in paper-based sensors.

A Thermal Blood Flow Sensor with Contact Force Compensation (접촉력 보정이 가능한 열적 방식의 혈류량 측정기)

  • Sim, Jai Kyoung;Youn, Sechan;Cho, Young-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.3
    • /
    • pp.237-242
    • /
    • 2013
  • This paper proposes a thermal peripheral blood flowmeter integrated with a force sensor that is capable of contact force compensation. We fabricate this blood flowmeter using a nickel RTD (resistance temperature detector) and piezoresistive force sensor by using microfabrication technology. In an experiment, we obtained a decreasing trend for the blood flow under an increasing contact force with a linear tendency of 31.7%/N. We then performed a compensation process based on this obtained trend. As a result, the maximum variance in the blood flow at 1-3N was 9.8%. Thus we achieved consistent blood flow measurement independent of the contact force. In this work, we verified that the thermal blood flowmeter integrated with a force sensor has the ability to accurately measure the blood flow independent of the contact force.

Cerebral blood flow enhancement device using Blood Oxygen Level Sensor (Blood Oxygen Level Sensor를 이용한 대뇌혈류증가 장치)

  • Lim, Jung-hyun;Joh, In-Hee;Kim, Young-kil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.8
    • /
    • pp.1083-1089
    • /
    • 2018
  • Surgery to increase cerebral blood flow is one of the treatment methods of cerebral infarction. In order to supplement this invasive method, non-invasive devices have been introduced that use human blood pressure to pressurize the extremities to increase cerebral blood flow. However, the problem of poor speed and accuracy was raised. In this paper, the perfusion index of each arm is measured by applying pressure to both arms using Blood Oxygen Level Sensor to improve the accuracy of measurement and measurement time. The pressure applied to the arm is calculated by using the pressure value obtained from the arm. Like the existing blood pressure measuring cerebral blood flow increasing device, the blood flow can be increased by more than 20% and the measurement time can be shortened, so that it can be selectively used for the patient with cerebral infarction.

Reduction of Chattering Error of Reed Switch Sensor for Remote Measurement of Water Flow Meter (리드 스위치 센서를 이용한 원격 검침용 상수도 계량기에서 채터링 오차 감소 방안 연구)

  • Ayurzana, Odgerel;Kim, Hie-Sik
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.4 s.316
    • /
    • pp.42-47
    • /
    • 2007
  • To reduce the chattering errors of reed switch sensors in the automatic remote measurement of water meter a reed switch sensor was analyzed and improved. The operation of reed switch sensors can be described as a mechanical contact switch by approximation of permanent magnet piece to generate an electrical pulse. The reed switch sensors are used mostly in measurement application to detect the rotational or translational displacement. To apply for water flow measurement devices, the reed switch sensors should keep high reliability. They are applied for the electronic digital type of water flow meters. The reed switch sensor is just mounted simply on the conventional mechanical type flow meter. A small magnet is attached on a pointer of the water meter counter rotor. Inside the reed sensor two steel leaf springs make mechanical contact and apart repeatedly as rotation of flow meter counter. The counting electrical contact pulses can be converted as the water flow amount. The MCU sends the digital flow rate data to the server using the wireless communication network. But the digital data is occurred difference or won by chattering noise. The reed switch sensor contains chattering error by it self at the force equivalent position. The vibrations such as passing vehicle near to the switch sensor installed location causes chattering. In order to reduce chattering error, most system uses just software methods, for example using filter algorithm and also statistical calibration methods. The chattering errors were reduced by changing leaf spring structure using mechanical characteristics.

Effect of Flow Field and Detection Volume in the Optical Particle Sensor on the Detection Efficiency (광학입자센서 내 유동장과 측정영역이 측정효율에 미치는 영향)

  • Kim, Young-Gil;Jeon, Ki-Soo;Kim, Tae-Sung
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3162-3167
    • /
    • 2007
  • The OPS (Optical Particle Sensor) using light scattering from the particles (real-time measurement without physical contact to the particles) can be used for cleanroom or atmospheric environment monitoring. For particles smaller than 300 nm, the detection efficiency becomes lower as scattered light decreases with particle size. To obtain higher detection efficiency with small particles, the flow field in particle chamber and the detection volume should be designed optimally to achieve maximum scattered light from the particles. In this study, a commercial computational fluid dynamics software FLUENT was used to simulate the gas flow field and particle trajectories with various optical chamber designs for 300 nm PSL particle. For estimation of laser viewing volume, we used a commercial computational optical design program ZEMAX. The results will be a great help in the development of OPS which can measure small particles with higher detection efficiency.

  • PDF

Localization with Two Optical Flow Sensors for Small Unmanned Ground Vehicles (두 개의 광류센서를 이용한 소형무인로봇의 위치 추정 기술)

  • Huh, Jinwook;Kang, Sincheon;Hyun, Dongjun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.95-100
    • /
    • 2013
  • Localization is very important for the autonomous navigation of Unmanned Ground Vehicles; however, it is difficult that they have a precise Inertial Navigation System(INS) sensor, especially Small Unmanned Ground Vehicle(SUGV). Moreover, there are some condition such as denial of global position system(GPS), GPS/INS integrated system is not robust. This paper proposes the estimation algorithm with optical flow sensor and INS. Being compared with previous researches, the proposed algorithm is suitable for skid steering vehicles. We revised the measurement model of previous research for the accuracy of side direction position. Experimental results were performed to verify the algorithm, and the result showed an excellent performance.

Development of Sensor Structure and Operating Circuit for Constant Resistive Type Flow Velocity/Mass Sensor (정저항형 유속/유량 센서의 구조 및 회로 개선 연구)

  • Kang, Yun-Seok;Park, Se-Kwang
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1339-1341
    • /
    • 1994
  • In this paper, the flow velocity/mass sensor which is based on the principle of CCT(Constant Chip Temperature) and its digital operating circuit and system have been developed and tested. The experimental result for flow velocity shows that the sensitivity is $644.01{\mu}W^2/[m/sec]$ for air, and there is nearly no hysteresis for full measured range of velocity. Response tine is between 1 second and 8 seconds for low and large velocity variation, respectively.

  • PDF