• 제목/요약/키워드: flow performance

검색결과 9,092건 처리시간 0.035초

다공판 시스템의 흡음성능에 유동이 미치는 영향 (The effect of the flow on the absorption performance of a perforated plate system)

  • 허성욱;제현수;양수영;이동훈
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.879-884
    • /
    • 2003
  • This paper is to experimentally investigate the effect of the through-flow and grazing-flow on the absorption performance of a perforated plate system. The experiment is performed through the systematic change of the through-flow velocity, grazing-flow velocity, incident sound pressure level, and the geometrical parameters such as the porosity and hole diameter. From the experimental results, it is found that for the nonlinear relationship between the acoustic resistance and incident sound pressure level there is no influence of the through-flow on the absorption performance, but fur the linear relationship between them there is a strong dependence of the absorption performance on the through-flow velocity. It is also shown that the absorption performance is controllable by changing the porosity and hole-diameter in size.

  • PDF

재생펌프의 누설 유동 및 내부 유동에 관한 연구 (Study on the Leakage Flow and the Flow Analysis of Regenerative Pump)

  • 심창열;강신형
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.593-596
    • /
    • 2002
  • Flows in a regenerative pump were calculated for several flow-rates, using the CFX-Tascflow. The calculated results show the vortex structure in the impeller and side channel. The predicted performance shows considerable discrepancy form the measured values for low flow rates. Main source of the difference is the leakage flow of pump strongly affecting the performance of pump. A simple correlation was proposed using calculated leakage flows through the parametric calculations of the simplified passage.

  • PDF

The Effect of Cash Flow Variation on Project Performance: An Empirical Study from Kuwait

  • AL-NASSAFI, Nawaf Marzouq
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제9권3호
    • /
    • pp.53-63
    • /
    • 2022
  • Despite the relationship between cash flow, financial management, and project performance, no study examined the mediating role of financial management on the relationship between cash flow and construction project performance, especially in Kuwait. The goal of this study was to examine the impact of cash flow fluctuations on construction project performance, as well as the role of financial management in mediating this relationship. To accomplish these goals, the researcher employed a descriptive-analytical method to create a questionnaire of 31 items. The study's sample was chosen at random and includes (181) project managers and firm owners from contractors' companies in Kuwait. The study found a statistically positive and significant effect of cash flow variation on project performance from the perspective of Kuwaiti contractors at the significance level (0.05), as well as a mediated role of financial management in the relationship between cash flow variation and project performance. The research came up with a number of recommendations based on the findings, including the need for contractors to have a better understanding of cash flow to arrange project activities correctly and efficiently. Further studies may be included into the effect of cash flow forecasting (planning) and financial management (control) on various construction activities.

A cavitation performance prediction method for pumps: Part2-sensitivity and accuracy

  • Long, Yun;Zhang, Yan;Chen, Jianping;Zhu, Rongsheng;Wang, Dezhong
    • Nuclear Engineering and Technology
    • /
    • 제53권11호
    • /
    • pp.3612-3624
    • /
    • 2021
  • At present, in the case of pump fast optimization, there is a problem of rapid, accurate and effective prediction of cavitation performance. In "A Cavitation Performance Prediction Method for Pumps PART1-Proposal and Feasibility" [1], a new cavitation performance prediction method is proposed, and the feasibility of this method is demonstrated in combination with experiments of a mixed flow pump. However, whether this method is applicable to vane pumps with different specific speeds and whether the prediction results of this method are accurate is still worthy of further study. Combined with the experimental results, the research evaluates the sensitivity and accuracy at different flow rates. For a certain operating condition, the method has better sensitivity to different flow rates. This is suitable for multi-parameter multi-objective optimization of pump impeller. For the test mixed flow pump, the method is more accurate when the area ratios are 13.718% and 13.826%. The cavitation vortex flow is obtained through high-speed camera, and the correlation between cavitation flow structure and cavitation performance is established to provide more scientific support for cavitation performance prediction. The method is not only suitable for cavitation performance prediction of the mixed flow pump, but also can be expanded to cavitation performance prediction of blade type hydraulic machinery, which will solve the problem of rapid prediction of hydraulic machinery cavitation performance.

Mean Streamline Analysis for Performance Prediction of Cross- Flow Fans

  • Kim, Jae-Won;Oh, Hyoung-Woo
    • Journal of Mechanical Science and Technology
    • /
    • 제18권8호
    • /
    • pp.1428-1434
    • /
    • 2004
  • This paper presents the mean streamline analysis using the empirical loss correlations for performance prediction of cross-flow fans. Comparison of overall performance predictions with test data of a cross-flow fan system with a simplified vortex wall scroll casing and with the published experimental characteristics for a cross-flow fan has been carried out to demonstrate the accuracy of the proposed method. Predicted performance curves by the present mean streamline analysis agree well with experimental data for two different cross-flow fans over the normal operating conditions. The prediction method presented herein can be used efficiently as a tool for the preliminary design and performance analysis of general-purpose cross-flow fans.

Air Layer Effect on the Performance Improvement of a Cross-Flow Hydro Turbine

  • Choi, Young-Do;Shin, Byeong-Rog;Lee, Young-Ho
    • 한국유체기계학회 논문집
    • /
    • 제13권4호
    • /
    • pp.37-43
    • /
    • 2010
  • The purpose of this study is not only to investigate the effects of air layer in the turbine chamber on the performance and internal flow of the cross-flow turbine, but also to suggest a newly developed air supply method. Field test is performed in order to measure the output power of the turbine by a new air supply method. CFD analysis on the performance and internal flow of the turbine is conducted by an unsteady state calculation using a two-phase flow model in order to embody the air layer effect on the turbine performance effectively. The result shows that air layer effect on the performance of the turbine is considerable. The air layer located in the turbine runner passage plays the role of preventing a shock loss at the runner axis and suppressing a recirculation flow in the runner. The location of air suction hole on the chamber wall is very important factor for the performance improvement. Moreover, the ratio between air from suction pipe and water from turbine inlet is also significant factor of the turbine performance.

저유량 특성을 고려한 사류 송풍기의 성능 해석 (Performance analysis of mixed-flow fans considering the low flow characteristics)

  • 오형우;김광용
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2000년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.110-115
    • /
    • 2000
  • The mean streamline analysis using the empirical loss correlations has been developed for performance prediction of industrial mixed-flow fan impellers in the present study. New simple, but effective, models for the additional Euler input work characteristic and an internal recirculation loss due to internal flow reversal under the low flowrate conditions are proposed in this paper. Comparison of overall performance predictions with six sets of test data of mixed-flow fans is accomplished to demonstrate the accuracy of the proposed models. Predicted performance curves by the present set of loss models agree fairly well with experimental data for a variety of mixed-flow fan impellers over the entire operating conditions. The prediction method presented herein can be used efficiently in the conceptual design phase of mixed-flow fan impellers.

  • PDF

Effect of Blade Angle on the Performance of a Cross-Flow Hydro Turbine

  • Choi, Young-Do;Lim, Jae-Ik;Kim, You-Taek;Lee, Young-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권3호
    • /
    • pp.413-420
    • /
    • 2008
  • In order to improve the performance of cross-flow hydro turbine, detailed examination of the effect of the turbine configuration on the performance is needed necessarily. Therefore, this study is aimed to investigate the effect of blade angle on the performance of the cross-flow hydro turbine. Analysis of the turbine performance with the variation of the blade angle has been made by using a commercial CFD code. The results show that inlet and outlet angles of runner blade give considerable effect on the performance of the turbine. Pressure on the surface of the runner blade changes remarkably by the blade angle both at the Stages 1 and 2. Moreover, relatively small blade inlet angle is effective to produce higher value of output power. Recirculating flow in the runner passage causes remarkable hydraulic loss.

허브 캡 형상에 따른 축류송풍기 성능특성 (Performance Characteristics of an Axial Flow Fan According to the Shape of a Hub Cap)

  • 장춘만;최승만;김광용
    • 한국유체기계학회 논문집
    • /
    • 제9권6호
    • /
    • pp.9-16
    • /
    • 2006
  • Performance characteristics of an axial flow fan having distorted inlet flow have been investigated using numerical analysis as well as experiment. Two kinds of hub-cap, rounded and right-angled front shape, are tested to investigate the effect of inlet flow distortion on the fan performance. Numerical solutions are validated in comparison with experimental data measured by a five-hole probe downstream of the fan rotor. It is found from the numerical results that non-uniform axial inlet velocity profile near the hub results in the change of inlet flow angle. Large recirculation flow upstream the fan rotor for the right-angled hub-cap induces a negative incidence, thus invokes separated flow on the blade surfaces and deteriorates the performance of fan rotor.

A Study of Performance and Internal Flow in a New Type of Sewage Pump

  • Nishi, Yasuyuki;Fukutomi, Junichiro
    • International Journal of Fluid Machinery and Systems
    • /
    • 제2권3호
    • /
    • pp.239-247
    • /
    • 2009
  • Sewage pumps are designed with a wide flow channel by, for example, sacrificing some efficiency and reducing the number of blades, in order to prevent plugging with foreign bodies. However, the behavior of foreign bodies which actually flow into a pump is extremely complex, and there are questions about whether the presumed foreign bodies will actually pass through. This paper proposes a new type of sewage pump impeller designed to further improve pump efficiency and performance in passing foreign bodies. This sewage pump impeller has a structure in which the suction flow channel of a closed type non-clog pump is wound in a helical spiral. The focus of this research was to investigate pump performance and internal flow in this single blade sewage pump impeller. The results clearly indicated the following facts: The developed sewage pump impeller exhibits high efficiency over a wide range of flow rates; internal flow of the pump is very complicated; and the internal flow state varies greatly when the flow rate changes.