• Title/Summary/Keyword: flow heterogeneity

Search Result 88, Processing Time 0.037 seconds

The Heterogeneity of Flow Distribution and Partition Coefficient in [15O-H2O] Myocardium Positron Emission Tomography ([15O-H2O] 심근 양전자 단층 촬영에서 혈류 분포의 비균일성과 분배계수)

  • Ahn, Ji Young;Lee, Dong Soo;Kim, Kyung Min;Jeong, Jae Min;Chung, June-Key;Shin, Seung-Ae;Lee, Myung Chul;Koh, Chang-Soon
    • The Korean Journal of Nuclear Medicine
    • /
    • v.32 no.1
    • /
    • pp.32-49
    • /
    • 1998
  • For estimation of regional myocardial blood flow with O-15 water PET, a few modifications considering partial volume effect based on single compartment model have been proposed. In this study, we attempted to quantify the degree of heterogeneity and to show the effect of tissue flow heterogeneity on partition coefficient(${\lambda}$) and to find the relation between perfusable tissue index(PTI) and ${\lambda}$ by computer simulation using two modified models. We simulated tissue curves for the regions with homogeneous and heterogeneous blood flow over a various flow range(0.2-4.0ml/g/min). Simulated heterogeneous tissue composed of 4 subregions of the same or different size of block which have different homogeneous flow and different degree of slope of distribution of blood flow. We measured the index representing heterogeneity of distribution of blood flow for each heterogeneous tissue by the constitution heterogeneity(CH). For model I, we assumed that tissue recovery coefficient ($F_{MME}$) was the product of partial volume effect($F_{MMF}$) and PTI. Using model I, PTI, flow, and $F_{MM}$ were estimated. For model II, we assumed that partition coefficient was another variable which could represent tissue characteristics of heterogeneity of flow distribution. Using model II, PTI, flow and ${\lambda}$ were estimated. For the simulated tissue with homogeneous flow, both models gave exactly the same estimates, of three parameters. For the simulated tissue with heterogeneous flow distribution, in model I, flow and $F_{MM}$ were correctly estimated as CH was increased moderately. In model II, flow and ${\lambda}$ were decreased curvi-linearly as CH was increased. The degree of underestimation of ${\lambda}$ obtained using model II, was correlated with CH. The degree of underestimation of flow was dependent on the degree of underestimation of ${\lambda}$. PTI was somewhat overestimated and did not change according to CH. We conclude that estimated ${\lambda}$ reflect the degree of tissue heterogeneity of flow distribution. We could use the degree of underestimation of ${\lambda}$ to find the characteristic heterogeneity of tissue flow and use ${\lambda}$ to recover the underestimated flow.

  • PDF

수리지질학적 조건에 따른 지하수유동 및 오염물질이동 영향연구

  • 이진용;이강근
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.280-282
    • /
    • 2002
  • In analysis of pumping test data, generally infinite domain has been assumed. However, in many cases, this assumption was not readily satisfied. Some boundaries conditions and natural heterogeneity of hydrogeologic properties would play critical roles on groundwater flow and contaminant transport. This study examined effects of some boundary conditions and heterogeneity on the groundwater flow and contaminant transport with basic numerical groundwater modeling, which provides implications for remediation of contaminated groundwater.

  • PDF

Exploring the Complexities of Dams' Impact on Transboundary Flow: A Meta-Analysis of Climate and Basin Factors

  • Abubaker Omer;Hyungjun Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.177-177
    • /
    • 2023
  • The impacts of dams on transboundary flow are complex and challenging to project and manage, given the potential moderating influence of a broad range of anthropogenic and natural factors. This study presents a global meta-analysis of 168 studies that examines the effect magnitude of dams on downstream seasonal, annual flow, and hydrological extremes risk on 39 hotspot transboundary river basins. The study also evaluates the impact of 13 factors, such as climate, basin characteristics, dams' design and types, level of transboundary cooperation, and socioeconomic indicators, on the heterogeneity of outcomes. The findings reveal that moderators significantly influence the impact of dams on downstream flow, leading to considerable heterogeneity in outcomes. Transboundary cooperation emerges as the key factor that determines the severity of dams' effect on both dry and wet season's flows at a significance level of 0.01 to 0.05, respectively. Specifically, the presence of water-supply and irrigation dams has a significant (0.01) moderating effect on dry-season flow across basins with high transboundary cooperation. In contrast, for wet-season flow, the basin's vulnerability to climate extremes is associated with a large negative effect size. The various moderators have varying degrees of influence on the heterogeneity of outcomes, with the aridity index, population density, GDP, and risk level of hydro-political tension being the most significant factors for dry-season flow, and the risk level of hydro-political tension and basin vulnerability to climate extremes being the most significant for wet-season flow. The results suggest that transboundary cooperation is crucial for managing the impacts of dams on downstream flow, and that various other factors, such as climate, basin characteristics, and socioeconomic indicators, have significant moderating effects on the outcomes. Thus, context-specific approaches are necessary when predicting and managing the impacts of dams on transboundary flow.

  • PDF

Geomorphological Approach to the Skewed Shape of Instantaneous Unit Hydrograph (순간단위도의 왜곡된 형상에 대한 지형학적 접근)

  • Kim, Joo-Cheol;Jung, Kwansue;Jeong, Dong Kug
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.2
    • /
    • pp.91-103
    • /
    • 2015
  • This paper presents the systematic approach to positively skewed shape of instantaneous unit hydrograph (IUH), that is one of the universal features of hydrologic response function. To this end an analytical expression of statistical moments for IUH is derived within the framework of geomorphologic instantaneous unit hydrograph (GIUH) theory and quantified according to the concept of hydrodynamic, geomorphologic and kinematic heterogeneity. There is a big scale difference between hillslope and channel flow path system. Although the former has the much smaller level of scale its variation coefficient tends to be higher and coefficient of skewness has the different trend than the latter. The shape of IUH is likely to be much more affected by kinematic heterogeneity rather than hydrodynamic heterogeneity and its combined effect with geomorphologic heterogeneity is the major cause of skewing hydrologic response function. Statistical features of hillslope and channel flow path can be transferred into hydrologic response function in the form of dimensionless statistics and their relative importance forms the general shape of hydrologic response function.

The Production and Spatial Heterogeneity of Litterfall in the Mixed Broadleaved-Korean Pine Forest of Xiaoxing'an Mountains, China

  • Jin, Guangze;Zhao, Fengxia;Liu, Liang;Kim, Ji Hong
    • Journal of Korean Society of Forest Science
    • /
    • v.97 no.2
    • /
    • pp.165-170
    • /
    • 2008
  • Litterfall has been recognized an important part of the forest ecosystem production, playing a major pathway in energy flow and nutrient cycling through the ecosystem. This study was carried out to examine the quantity and components, temporal variation, and spatial heterogeneity of the litterfall in the mixed broadleaved-Korean pine forest. The data were collected from the 9ha permanent experimental plot, of which on the center area, i.e. $150m{\times}150m$, the total number of 319 circular litterfall traps with the size of $0.5m^2$ were established to collect falling litterfall. The results showed that the annual amount of litterfall was totalized 3,033.7 kg/ha, occupying broad-leaves of 39.3%, conifer-leaves of 29.5%, others of 18.5%, branches of 10.4%, and seeds of 2.3%. The peak point of the litterfall production was made at the end of September, proportionating 32.2% of total amount. The analysis of semivariogram revealed the existence of high spatial heterogeneity, calculated the scale of spatial heterogeneity ranged from 11.6 m to 29.1 m. The result of proportion (C/[Co+C]) showed that spatial heterogeneity of autocorrelation in total spatial heterogeneity were from 97.0% to 100%. The relatively heavy branches and others had significant differences in litterfall production between the areas of canopy gap and closed canopy in the 95% probability level, but the other components did not show statistical differences.

The assessment of the relative contribution of the shape of instantaneous unit hydrograph with heterogeneity of drainage path (배수경로 이질성에 의한 순간단위도 형상의 상대적 기여도 평가)

  • Choi, Yong-Joon;Kim, Joo-Cheol;Kim, Jae-Han
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.11
    • /
    • pp.897-909
    • /
    • 2009
  • The relative contribution of between hillslope-flow and stream-flow by heterogeneity of drainage path are quantitatively assessed in the present study with GIUH model based on grid of GIS. Application watersheds are selected Pyeongchang, Bocheong and Wi river basin of IHP in Korea. The mean and variance of hillslope and stream length are estimated and analyzed in each watershed. And coupling with observation storm events, estimate hillslope and stream characteristic velocity which dynamic parameters of GIUH model. The mean and variance of distribution of travel time (i.e. IUH) calculate using estimated pass lengths and characteristic velocities. And the relative contributions are assessed by heterogeneity of drainage path. As a result, the effect of the variance that determine shape of IUH dominate with hillslope's effect in the small watershed area (within 500 $km^2$). Thus, GIUH in the small watershed area must consider hillslope-flow.

Effect of Groundwater Flow on Ice-wall Integrity (얼음벽 형성에 대한 지하수 흐름의 영향)

  • Shin, Hosung;Kim, Jinwook;Lee, Jangguen
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.11
    • /
    • pp.43-55
    • /
    • 2018
  • AGF (Artificial Ground Freezing) method is a temporary ground improvement method which can apply to all types of soil with the purpose of high stiffness and low hydraulic conductivity. However, the groundwater flow and the heterogeneity of the ground increase the uncertainty of the ice-column formation which hinders the reliability of this method. The effects of groundwater flow and layered heterogeneity on ice-wall integrity by AGF method were analyzed using finite element analysis program for a coupled thermo-hydro phenomena in the freezing ground. Groundwater flow changes circular ice-column into elliptical shapes and increases the time required for the formation of ice walls. The previous theoretical formula overestimated the completion time of the ice wall and the critical groundwater velocity by neglecting the thermal interaction between adjacent ice-columns. Numerical results presented the corrected formula and verified the proposed equation for the dimensionless ice-wall completion time. In the layered heterogeneous ground, the thickness of the layer with higher hydraulic conductivity and its relative magnitude were found to be important factors in the ice-wall completion time and critical velocity.

Development of a Kinematic Wave Model to Route Overland Flow in Vegetated Area (II) -Runoff Plot Experiments and Model Application- (초지의 지표면 흐름을 추적하기 위한 Kinematic Wave Model의 개발(II) - 포장실험과 모형의 응용 -)

  • ;W.L.Magette
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.35 no.3
    • /
    • pp.74-80
    • /
    • 1993
  • Runoff simulation tests to investigate the flow mechanics of nonsuomerged overland flow in a natural grass intervening land system were condueted and a modified kinematic wave overland runoff model developed by Choi et al. (1993) was verified. Nonhomogeneity and heterogeneity of the soil, slope, local topography, infiltration, grass density, and the density and activity of the soil microhes and wild animals were the major factors affecting the flow. Streamlines were disturbed by grass stems and small concentrated flows due to the disturbed streamlines and local topography were observed a lot. Relatively larger concentrated flows were observed where bundles of grass were dominant than where individual grasses were growing. Predicted hydrographs were agreed verv well with measured hydrographs. Since the modified model considers grass density in computing flow depth and hydraulic radius, it can be better than existing kinematic wave model if it were used to route nonpoint source pollutant attenuation processes in many grass intervening land systems.

  • PDF

Development of Numerical Model for Simulating Remediation Efficiency Using Surfactant in a NAPL Contaminated Area (계면활성제에 의한 NAPL 오염의 정화효율 수치 모의를 위한 모델 개발)

  • Suk, Heejun;Son, Bongho;Park, Sungmin;Jeon, Byonghun
    • Clean Technology
    • /
    • v.25 no.3
    • /
    • pp.206-222
    • /
    • 2019
  • Recently, various multiphase flows have been developed, and among them some models have been commercialized. However, most of them have been developed based on a pressure-based approach; therefore, various numerical difficulties were involved inherently. Accordingly, in order to overcome these numerical difficulties, a multiphase flow model, MultiPhaSe flow (MPS), following a fractional-flow based approach was developed. In this study, by combining a contaminant transport module describing an enhanced dissolution effect of a surfactant with MPS, a MultiPhaSe flow and TranSport (MPSTS) model was developed. The developed model was verified using the analytical solution of Clement. The MPSTS model can simulate the process of surfactant enhanced aquifer remediation including interphase mass transfer and contaminant transport in multiphase flow by using the coupled particle tracking method and Lagrangian-Eulerian method. In this study, a surfactant was used in a non aqueous phase liquid (NAPL) contaminated area, and the effect of hydro-geological heterogeneity in the layered media on remediation efficiency was studied using the developed model. According to the numerical simulation, when hydraulic conductivity in a lower layer is 10 times, 20 times, and 50 times larger than that in an upper layer, the concentration of dissolved diesel in the lower layer is much higher than that in the upper layer because the surfactant moves faster along the lower layer owing to preferential flow; thus, the surfactant enhances dissolution of residual non aqueous phase liquid in the lower layer.

Flow cytometry As a Tool for Monitoring Immune Parameters of the Manila clam Ruditapes philippinarum

  • Park, Kyung-Il;Philippe Soudant;Park, Kwang-Sik
    • Proceedings of the Korean Society of Fisheries Technology Conference
    • /
    • 2003.05a
    • /
    • pp.369-369
    • /
    • 2003
  • Hemocytes in marine bivalves play important immunological roles in discrimination, opsonization and phagocytosis of foreign materials as a defense mechanism. In this study we report the flow cytometric implications to investigate the immune parameters such as the compositional and the functional characteristics of hemocytes isolated from the Manila clams, Ruditapes philippinarum. Heterogeneity of the hemocytic cell population was determined by the forward scatter (FSC) and side scatter (SSC) cytometric profile which showed three populations: granulocytes, hyalinocytes and small agranular cells. In addition, phagocytosis rate was measured after adding fluorescent-labeled particles. The data were initially analysed for two-parameters: FSC and SSC, then the fluorescent (FL 1) frequency distribution histogram of the hemocyte population was subsequently obtained.

  • PDF