• Title/Summary/Keyword: flow field modeling

Search Result 341, Processing Time 0.029 seconds

3D Visualization System of Blood Flow Reconstructed using Curvature Estimation (곡률 추정을 이용하여 재건된 혈류의 3차원 가시화 시스템)

  • Kwon, Oh-Seo;Yoon, Joseph;Kim, Young-Bong
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.2
    • /
    • pp.224-232
    • /
    • 2016
  • The methodology to visualize the shape of blood vessel and its blood flow have been attracting as a very interesting problem to forecast and examinate a disease in thrombus precursor protein. May previous visualization researches have been appeared for designing the blood vessel and also modeling the blood flow using a doppler imaging technique which is one of nondestructive testing techniques. General visualization methods are to depict the blood flow obtained from doppler effects with fragmentary stream lines and also visualize the blood flow model using volume rendering. However, these visualizeation techniques have the disadvantage which a set of small line segments does not give the overall observation of blood flows. Therefore, we propose a visualization system which reconstruct the continuity of the blood flow obtained from doppler effects and also visualize the blood flow with the vector field of blood particles. This system will use doppler phase difference from medical equipments such as OCT with low penetration and reconstruct the blood flow by the curvature estimation from vector field of each blood particle.

A Study on the Application of Fire Modeling for Multiplex Cinema Theater (복합상영관 화재에 대한 화재모델링의 적용)

  • 허준호;김종훈;노삼규;김운형
    • Fire Science and Engineering
    • /
    • v.18 no.1
    • /
    • pp.42-48
    • /
    • 2004
  • The deterministic modeling techniques like Zone model and Field model are mainly used for thermal distribution and smoke flow at fire case in multi use facilities. While Zone model analyse fire simulation by dividing spaces by 2 section, the Field model dividing many cells. However, the difficultly follows to prove efficiency between the two models when it applys. Therefore new modeling development is required which in closes to real situation by verify number algorithm and related data for fire modeling. The paper analyses the efficiency of two different fire modeling at interior spaces of multiplex cinema theater. It is found that the zone model for average distribution and the field model for detail space phenomenon are relevant to apply. Also, Filed model is useful to the result that fire analysis and position of detector and review for smoke control system.

Dynamic instability response in nanocomposite pipes conveying pulsating ferrofluid flow considering structural damping effects

  • Esmaeili, Hemat Ali;Khaki, Mehran;Abbasi, Morteza
    • Structural Engineering and Mechanics
    • /
    • v.68 no.3
    • /
    • pp.359-368
    • /
    • 2018
  • This paper deals with the dynamic stability of nanocomposite pipes conveying pulsating ferrofluid. The pipe is reinforced by carbon nanotubes (CNTs) where the agglomeration of CNTs are considered based on Mori-Tanaka model. Due to the existence of CNTs and ferrofluid flow, the structure and fluid are subjected to axial magnetic field. Based on Navier-Stokes equation and considering the body forced induced by magnetic field, the external force of fluid to the pipe is derived. For mathematical modeling of the pipe, the first order shear deformation theory (FSDT) is used where the energy method and Hamilton's principle are used for obtaining the motion equations. Using harmonic differential quadrature method (HDQM) and Bolotin's method, the motion equations are solved for calculating the excitation frequency and dynamic instability region (DIR) of the structure. The influences of different parameters such as volume fraction and agglomeration of CNTs, magnetic field, structural damping, viscoelastic medium, fluid velocity and boundary conditions are shown on the DIR of the structure. Results show that with considering agglomeration of CNTs, the DIR shifts to the lower excitation frequencies. In addition, the DIR of the structure will be happened at higher excitation frequencies with increasing the magnetic field.

Study on Performance Test of Plate Type ER-Valves (평판형 ER-Valve의 성능실험에 관한 연구)

  • Jang S.C.;Yum M.O.;Kim D.T.;Park J.B.
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.321-324
    • /
    • 2002
  • Hydraulic valve control the pressure and the How of fluid by the hydraulic oil transfered from pump but the ER fluid consists of solid particles of micrometer in size and insulating oil so in the general hydraulic valve. We invented ER-Valve using ER fluid as working fluid. The ER fluid, working fluid of ER-Valve is a functional fluid to represent the feature of fluid according to strength of electric field. In this research we made our own 4 types of plate type ER-Valve which has same surface but different width and length and then we conducted performance test. We measured flow rate and pressure drop of fluid which is flowing in the ER-Valve according to the electric field strength to conduct this test. We modeling ER-Valve relating to ER-Valve system and yield shear stress according to the strength of electric field. We used the pressure drop according to the strength of electric field by differential pressure gauge in the our own made ER-Valve. This test reviewed experimental the special changes of ER-Fluid in the steady flow condition.

  • PDF

Turbidity Modeling for a Negative Buoyant Density Flow in a Reservoir with Consideration of Multiple Particle Sizes (입자크기 분포를 고려한 부력침강 저수지 밀도류의 탁도 모델링)

  • Chung, Se Woong;Lee, Heung Soo;Jung, Yong Rak
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.3
    • /
    • pp.365-377
    • /
    • 2008
  • Large artificial dam reservoirs and associated downstream ecosystems are under increased pressure from long-term negative impacts of turbid flood runoff. Despite various emerging issues of reservoir turbidity flow, turbidity modeling studies have been rare due to lack of experimental data that can support scientific interpretation. Modeling suspended sediment (SS) dynamics, and therefore turbidity ($C_T$), requires provision of constitutive relationships ($SS-C_T$) and accounting for deposition of different SS size fractions/types distribution in order to display this complicated dynamic behavior. This study explored the performance of a coupled two-dimensional (2D) hydrodynamic and particle dynamics model that simulates the fate and transport of a turbid density flow in a negatively buoyant density flow regime. Multiple groups of suspended sediment (SS), classified by the particle size and their site-specific $SS-C_T$ relationships, were used for the conversion between field measurements ($C_T$) and model state variables (SS). The 2D model showed, in overall, good performance in reproducing the reservoir thermal structure, flood propagation dynamics and the magnitude and distribution of turbidity in the stratified reservoir. Some significant errors were noticed in the transitional zone due to the inherent lateral averaging assumption of the 2D hydrodynamic model, and in the lacustrine zone possibly due to long-term decay of particulate organic matters induced during flood runoffs.

Volumetric NURBS Representation of Multidimensional and Heterogeneous Objects: Modeling and Applications (VNURBS기반의 다차원 불균질 볼륨 객체의 표현: 모델링 및 응용)

  • Park S. K.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.10 no.5
    • /
    • pp.314-327
    • /
    • 2005
  • This paper describes the volumetric data modeling and analysis methods that employ volumetric NURBS or VNURBS that represents heterogeneous objects or fields in multidimensional space. For volumetric data modeling, we formulate the construction algorithms involving the scattered data approximation and the curvilinear grid data interpolation. And then the computational algorithms are presented for the geometric and mathematical analysis of the volume data set with the VNURBS model. Finally, we apply the modeling and analysis methods to various field applications including grid generation, flow visualization, implicit surface modeling, and image morphing. Those application examples verify the usefulness and extensibility of our VNUBRS representation in the context of volume modeling and analysis.

Development of Methodology for Fracture Network Analysis in the Unsaturated Zone using MINC Approach in TOUGH2 Code (TOUGH2 전산코드의 MINC 기법을 이용한 불포화 암반 내 단열 해석 방법론 개발)

  • Ha, Jaechul;Cheong, Jae-yeol;Kim, Soogin;Yoon, Jeonghyoun
    • The Journal of Engineering Geology
    • /
    • v.26 no.3
    • /
    • pp.325-330
    • /
    • 2016
  • The second phase of low- and intermediate-level waste (LILW) disposal facility is under planned on the sedimentary rock in unsaturated zone. In this study, we created two meshes which were a matrix continuum mesh and a fracture continuum mesh to carry out 2 dimensional numerical modeling for groundwater flow in the unsaturated zone containing fractures focused on the second phase of LILW disposal facility. Two continuum meshes were developed using MINC in meshmaker module of TOUGH2 code. A fracture continuum mesh was included the k-field distribution of the permeability derived from the Discrete Fractured Network (DFN) modeling. To apply the unsaturated zone for the modeling, the gridding steps to generate mesh were developed. Each step to generate a mesh consisted of definition of materials, setting the initial conditions and creating grids using MINC. The methodology development of meshes in this study will be applied for more precise modeling of groundwater flow and mass transport.

Air Quality Modeling of Ozone Concentration According to the Roughness Length on the Complex Terrain (복잡지형에서의 지표면 거칠기에 따른 오존 농도 수치모의)

  • Choi, Hyun-Jung;Lee, Hwa-Woon;Sung, Kyoung-Hee
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.4
    • /
    • pp.430-439
    • /
    • 2007
  • The objective of this work is the air quality modeling according to the practical roughness length using the building information as surface boundary conditions. As accurate wind and temperature field are required to produce realistic urban air quality modeling, comparative simulations by various roughness length are discussed. The prognostic meteorological fields and air quality field over complex areas of Seoul, Korea are generated by the PSU/NCAR mesoscale model (MM5) and the Third Generation Community Multi-scale Air Quality Modeling System (Models-3/CMAQ), respectively. The simulated $O_3$ concentration on complex terrain and their interactions with the weak synoptic flow had relatively strong effects by the roughness length. A comparison of the three meteorological fields of respective roughness length reveals substantial localized differences in surface temperature and wind folds. Under these conditions, the ascended mixing height and weakened wind speed at night which induced the stable boundary stronger, and the difference of simulated $O_3$ concentration is $2{\sim}6\;ppb$.

PWN SED modeling: stationary and time-dependent leptonic scenarios

  • Kim, Seung-jong;An, Hong-jun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.2
    • /
    • pp.43.3-43.3
    • /
    • 2018
  • We develop a model for broadband spectral energy distribution (SED) of Pulsar Wind Nebulae (PWNe). The model assumes that electrons/positrons in the pulsar wind are injected into and stochastically accelerated in the pulsar termination shock. We consider two scenarios: a stationary one-zone case and a time-evolving multi-zone case. In the latter scenario, flow properties in the PWNe (magnetic field, bulk speed) are modeled to vary in time and space. We apply the model to the broadband SED of the pulsar wind nebula 3C 58. From the modeling, we find that a broken power-law injection is required with the maximum electron energy of ~200 TeV.

  • PDF

Nonlinear finite element analysis of reinforced concrete structures subjected to transient thermal loads

  • Zhou, C.E.;Vecchio, F.J.
    • Computers and Concrete
    • /
    • v.2 no.6
    • /
    • pp.455-479
    • /
    • 2005
  • This paper describes a 2D nonlinear finite element analysis (NLFEA) platform that combines heat flow analysis with realistic analysis of cracked reinforced concrete structures. The behavior models included in the structural analysis are mainly based on the Modified Compression Field Theory and the Distributed Stress Field Model. The heat flow analysis takes into account time-varying thermal loads and temperature-dependent material properties. The capability of 2D nonlinear transient thermal analysis is then implemented into a nonlinear finite element analysis program VecTor2(C) for 2D reinforced concrete membranes. Analyses of four numerical examples are performed using VecTor2, and results obtained indicate that the suggested nonlinear finite element analysis procedure is capable of modeling the complete response of a concrete structure to thermal and mechanical loads.