• Title/Summary/Keyword: flow field characteristics

Search Result 1,731, Processing Time 0.029 seconds

A Study of Artificial Reef Subsidence in Unsteady Flow-Wave Field (비정상 흐름-파랑 공존장의 인공어초 침하특성에 관한 연구)

  • Yun, Sang Jun;Kim, Heon Tae
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.3
    • /
    • pp.28-34
    • /
    • 2001
  • The experimental studies for the artificial reef (AFR) subsidence characteristics in the unsteady flow field and in the unsteady flow-wave field were carried out. The difference of scou $r_sidence characteristics between in the steady flow field and in the unsteady flow field wad discussed and also the long-term subsidence characteristics in the unsteady flow field were investigated. AFR subsidence characteristics was discussed with Keulegan - Carpenter number(KC), Reynolds number (Re),. Shields number (Sn) and dimensionless time (t/Tt). And the difference of subsidence characteristics between in the unsteady flow and in the unsteady flow-wave field was discussed.ed.

  • PDF

A Study of Artificial Reef Subsidence in Unsteady Flow-Wave Field (비정상 흐름-파랑 공존장의 인공어초 침하특성에 관한 연구)

  • Yun, Sang Jun;Kim, Heon Tae
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.3
    • /
    • pp.29-29
    • /
    • 2001
  • The experimental studies for the artificial reef (AFR) subsidence characteristics in the unsteady flow field and in the unsteady flow-wave field were carried out. The difference of scour/subsidence characteristics between in the steady flow field and in the unsteady flow field wad discussed and also the long-term subsidence characteristics in the unsteady flow field were investigated. AFR subsidence characteristics was discussed with Keulegan - Carpenter number(KC), Reynolds number (Re),. Shields number (Sn) and dimensionless time (t/Tt). And the difference of subsidence characteristics between in the unsteady flow and in the unsteady flow-wave field was discussed.

A Study of Artificial Reef Subsidence in Unsteady Flow Field (비정상 흐름장의 인공어초 침하특성에 관한 실험적 연구)

  • 윤상준;김헌태
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.234-239
    • /
    • 2001
  • The subsidence characteristics of artificial reef in the unsteady flow such as tidal flow were investigated. The scour and subsidence characteristics were confirmed in the steady flow field, wave field and steady flow-wave field. In a main study, the interaction of Flow-Sediment Movement-Structure Behavior and scour.subsidence mechanism were discussed in the unsteady flow field and the unsteady flow-wave field. Most of all, the continuous artificial reef subsidence from the scour was occurred by periodic behavior of artificial reef. This behavior is result from the asymmetric ground, and is influenced by maximum velocity, duration time and direction of flow.

  • PDF

Flow Rate-Pressure Drop Characteristics of Dispersive ER Fluid According to Change of Electric Field Strength in Clearance between Parallel Plates (평행평판 간극에서 전기장의 강도변화에 따른 분산계 ER유체의 유량-압력강하 특성)

  • 장성철;염만오;김도태
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.1
    • /
    • pp.78-83
    • /
    • 2003
  • Electro-rheological(ER) fluids are suspensions in which rheological properties show an abrupt change with variation of electric fields. We modeled the parallel-plates relating to ER-Valve system and yielded shear stress according to the strength of electric field. The purpose of the present study is to examine the flow characteristics of ER fluids according to the strength of electric field between parallel-plates. Then the steady relationship between pressure drop and flow rate of the ER fluids between parallel-plates under application of an electric fields was measured. The pressure drop and flow rates of ER fluids under the application of electric fields for steady flow were measured. For the experiment, we used the ER fluids, 35w% zeolite having hydrous particles and differential pressure gauge. This test reviewed experiment for the special changes of ER fluids in the steady flow condition.

Prediction of flow field in an axial compressor with a non-uniform tip clearance at the design and off-design conditions (설계점 및 탈설계점에서 비균일 익단 간극을 가지는 축류 압축기의 유동장 예측)

  • Kang, Young-Seok;Park, Tae-Choon;Kang, Shin-Hyoung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.11 no.6
    • /
    • pp.46-53
    • /
    • 2008
  • Flow structures in an axial compressor with a non-uniform tip clearance were predicted by solving a simple prediction method. For more reliable prediction at the off-design condition, off-design flow characteristics such as loss and flow blockage were incorporated in the model. The predicted results showed that flow field near the design condition is largely dependent on the local tip clearance effect. However overall flow field characteristics are totally reversed at off-design condition, especially at the high flow coefficient. The tip clearance effect decreases, while the local loss and flow blockage make a complicated effect on the compressor flow field. The resultant fluid induced Alford's force has a negative value near the design condition and it reverses its sign as the flow coefficient increases and shows a very steep increase as the flow coefficient increases.

A Study of Artificial Reef Subsidence in Unsteady Flow Field (비정상 흐름장의 인공어초 침하특성에 관한 실험적 연구)

  • 김헌태
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.2
    • /
    • pp.33-38
    • /
    • 2001
  • The subsidence characteristics of artificial reef (AFR) in the unsteady flow such as tidal flow were investigated. The scour and subsidence characteristics were confirmed in the steady flow field. In a main study, the interaction of "Flow - Sediment Movement - Structure Behavior" and scou $r_sidence mechanism were discussed int he unsteady flow field. AFR subsidence characteristics was discussed with Reynolds number(Re*), Shields number(Sn*), dimensionless acceleration of flow (af/g) and dimensionless time (t/T). Most of all, the continuous AFR subsidence from the scour was occurred by periodic behavior of AFR. This behavior is result from the asymmetric ground, and is influenced by maximum velocity, duration time and direction of flow.ow.

  • PDF

An Experimental Study on the Swirling Flow Field in the Tangentially Fired Furnace (접선식 배치로내의 선회유동장에 관한 실험적 연구)

  • ;;;Yoon, S. H.;Sim, J. K.;Song, H. B.
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.11
    • /
    • pp.3003-3013
    • /
    • 1995
  • The characteristics of the flow field in the tangentially fired furnace are presented. Experiments are conducted in the simplified cold type isothermal flow model. In the measurement of flow field, a hot wire anemometer is used. The hot wire was calibrated by lookup table method. The mean velocity field and turbulence characteristics are showed with changing the nozzle angle. In the center of the model, the low speed, unstable flow region is formed. The size and position of these regions are varied with changing the nozzle angle. It can be used as fundamental data in the design of the large furnace. From the experimental results, various turbulent characteristics of swirling flow field is obtained. And the entrainment mechanism of the jet flow field is described from the distribution of the skewness and the flatness. It can be used the raw data of approximate calculation and turbulent modelling.

A Study on the Ultrasonic Effect for Turbulence Enhancement in the Flow Field of a Coaxial Circular Pipe (동심원관 유동장에서 난류증진을 위한 초음파 영향에 관한 연구)

  • Song, Min-Geun;Koo, Ja-Hoon;Lee, Sang-Bum;Son, Seung-Woo;Ju, Eun-Sun
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.742-747
    • /
    • 2001
  • A study on the ultrasonic effect for turbulence enhancement is carried out in the horizontal flow field of a coaxial circular pipe. A large transparent acryl tank is made to perform several experiments for the above research. The front flow field from jet exit is divided as 4 measuring regions to observe characteristics of the above flow field according to those with and without ultrasonic. An ultrasonic transducer with 2MHz high frequency is used to give them the ultrasonic forcing. Characteristics such as the velocity distribution, the kinetic energy and the turbulence intensity are visualized, observed, examined and considered at Re No. 2000. In results, it is clarified that the ultrasonic increases the turbulence enhancement. And the optimum and harmonious intensity suited to the power of flow is needed to maximize the turbulence enhancement.

  • PDF

Numerical Analysis of the Three-Dimensional Wake Flow and Acoustic Field around a Circular Cylinder

  • Kim, Tae-Su;Kim, Jae-Soo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.4
    • /
    • pp.319-325
    • /
    • 2010
  • For decades, researchers have rigorously studied the characteristics of flow traveling around blunt objects in order to gain greater understanding of the flow around aircraft, vehicles or vessels. Many different types of flow exist, such as boundary layer flow, flow separation, laminar and turbulent flow, vortex and vortex shedding; such types are especially observed around circular cylinders. Vortex shedding around a circular cylinder exhibits a two-dimensional flow structure possessing a Reynolds number within the range of 47 and 180. As the Reynolds number increases, the Karman vortex changes into a three-dimensional flow structure. In this paper, a numerical analysis was performed examining the flow and aero-acoustic field characteristics around a circular cylinder using an optimized high-order compact scheme, which is a high order scheme. The analysis was conducted with a Reynolds number ranging between 300 and 1,000, which belongs to B-mode flow around a circular cylinder. For a B-mode Reynolds number, a proper spanwise length is analyzed in order to obtain the characteristics of three-dimensional flow. The numerical results of the Strouhal number as well as the lift and drag coefficients according to Reynolds numbers are coincident with the other experimental results. Basic research has been conducted studying the effects an unstable three-dimensional wake flow on an aero-acoustic field.

Numerical Analysis on the Flow Field and Heat Transfer Characteristics of Longitudinal Vortices in Turbulent Boundary Layer - On the Common Flow Up - (3차원 난류경계층 내에 존재하는 종방향 와동의 유동장 및 열전달 특성에 관한 수치해석(II) - Common Flow Up에 관하여 -)

  • Yang Jang-Sik
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.9
    • /
    • pp.799-807
    • /
    • 2005
  • The flow characteristics and the heat transfer rate on a surface by the interaction of a pair of vortices are studied numerically. To analyze the common flow up produced by vortex generators in a rectangular channel flow, the pseudo-compressibility viscous method is introduced into the Reynolds-averaged Navier-Stokes equation for 3-dimensional unsteady, incompressible viscous flows. To predict turbulence characteristics, a two-layer $k-\varepsilon$ turbulence model is used on the flat plate 3-dimensional turbulence boundary The computational results predict accurately Reynolds stress, turbulent kinetic energy and flow field generated by the vortex generators. The numerical results, such as thermal boundary layers, skin friction characteristics and heat transfers, are also reasonably close to the experimental data.