• Title/Summary/Keyword: flow dynamics

Search Result 2,696, Processing Time 0.04 seconds

Design Optimization of Dual-Shell and Tube Heat Exchanger for Exhaust Waste Heat Recovery of Gas Heat Pump (GHP 배열회수용 이중 쉘-튜브형 배기가스 열교환기의 설계 최적화)

  • Lee, Jin Woo;Shin, Kwang Ho;Choi, Song;Chung, Baik Young;Kim, Byung Soon
    • Transactions of the KSME C: Technology and Education
    • /
    • v.3 no.1
    • /
    • pp.23-28
    • /
    • 2015
  • In this paper, we performed the design optimization dual-shell and tube heat exchanger on exhaust waste heat recovery for gas heat pump using CFD and RSM. CFD analysis is useful to design the complex structure such as double shell and tube heat exchanger. By computer simulation, engineers can assess the feasibility of the given design factors and change them to get a better design. But if one wishes to perform complex analysis on the simulation, such dual-shell and tube heat exchanger for GHP, the computational time can become overwhelming. CFD is powerful but it takes a lot of time for complex structure. Therefore, the CFD analysis is minimized by the optimization using the RSM method. As a result, the number of baffle and tube are optimized by 6 baffles and 25 tubes for heat transfer and flow friction. And then pressure drop and heat transfer is improved about 12.2%. We confirm the design optimization using CFD and RSM is useful on complex structure of heat exchanger.

Seasonal Ground Water Table Changes Following Forest Harvesting in Small Headwater Riparian Areas (산지계류 수변지역에서 산림벌채 후 지하수위의 계절 변화)

  • Choi, Byoung-Koo
    • Korean Journal of Environment and Ecology
    • /
    • v.26 no.4
    • /
    • pp.620-628
    • /
    • 2012
  • This study addressed the influence of forest harvesting on seasonal water table dynamics in small headwater riparian areas. Four treatments including potential Best Management Practices(BMPs) for ephemeral and intermittent streams were implemented(BMP1, BMP2, clearcut and reference). Water table measurements were obtained at bi-monthly intervals for 3 years including one year of pre- and two years of post-harvest observations. Overall, water table responses affected largely by rainfall amount. In addition, significant increases in water table levels following harvesting occurred throughout the two post-harvest years. Water table levels increased up to 28.2cm in the clearcut treatment during 2008 and up to 54.2cm in BMP2 during 2009. However, increase in water table elevation was not directly related to basal area removal despite considerable differences in basal area removed between BMP2 and clearcut treatments. Water table rises were apparent in that water table were more elevated during dry season(June through November) than during wet season(December through May). These seasonal fluctuations were presumably driven by changes in evapotranspiration caused by differences in leaf area of overstory canopy and understory following harvest.

A Numerical Study of Effects of Body Shape on Cavity and Drag of Underwater Vehicle (몸체 형상이 수중운동체의 공동 발달과 항력특성에 미치는 영향에 대한 수치적 연구)

  • Kim, Hyoung-Tae;Kang, Kyung-Tae;Choi, Jung-Kyu;Jung, Young-Rae;Kim, Min-Jae
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.3
    • /
    • pp.252-264
    • /
    • 2018
  • The calculation of steady-state cavitating flows around Supercavitating Underwater Bodies (SUB's), which consist of a circular disk head (cavitator), a conical fore-body, a cylindrical middle-body and either a boat-tail or a flare-tail, are carried out. To calculate the axisymmetric cavitating flow, used is a commercial computational fluid dynamics code based on the finite volume method, Fluent. From the analysis of numerical results, the cavity and drag, affected by the fore-body and tail of the SUB's, are investigated. Firstly, the effect of the fore-body shape is investigated with the same disk cavitator and a cylindrical rear-body of fixed diameter. Then with the same cavitator and a fixed fore-body, the effect of the rear-body shape is investigated. Before the cavity generated by the cavitator covers the slant of fore-bodies sufficiently, the larger the cone angle of the fore-body(i.e., the shorter the slant length), the larger the drag and the slower the development of cavity. After the cavity covers the fore-body completely so that the pressure drag component of the body is vanished, the characteristics of drag-velocity curves are identical. Also, as the tail angle is bigger, the cavity generated by the cavitator is suppressed further and the drag becomes larger. The peak of the drag appears for the flare-tail, i.e., when the tail angle is positive(+). On the contrary, the trough of the drag appears for the boat-tail, i.e., when the tail angle is negative(-). When the tail angle is 5 degrees, the peak of the drag appears at the body speed of 80m/s and the value of the drag is 43% larger than that at the design speed of 100m/s. When the tail angle is -5 degrees, the trough of the total drag appears at 75m/s and that drag is 30% smaller than that of the cavitator, which means the rest of the body has a negative drag.

Characterization of the Alzheimer's disease-related network based on the dynamic network approach (동적인 개념을 적용한 알츠하이머 질병 네트워크의 특성 분석)

  • Kim, Man-Sun;Kim, Jeong-Rae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.6
    • /
    • pp.529-535
    • /
    • 2015
  • Biological networks have been handled with the static concept. However, life phenomena in cells occur depending on the cellular state and the external environment, and only a few proteins and their interactions are selectively activated. Therefore, we should adopt the dynamic network concept that the structure of a biological network varies along the flow of time. This concept is effective to analyze the progressive transition of the disease. In this paper, we applied the proposed method to Alzheimer's disease to analyze the structural and functional characteristics of the disease network. Using gene expression data and protein-protein interaction data, we constructed the sub-networks in accordance with the progress of disease (normal, early, middle and late). Based on this, we analyzed structural properties of the network. Furthermore, we found module structures in the network to analyze the functional properties of the sub-networks using the gene ontology analysis (GO). As a result, it was shown that the functional characteristics of the dynamics network is well compatible with the stage of the disease which shows that it can be used to describe important biological events of the disease. Via the proposed approach, it is possible to observe the molecular network change involved in the disease progression which is not generally investigated, and to understand the pathogenesis and progression mechanism of the disease at a molecular level.

Assessment for Inhalation Exposure to Trihalomethanes (THMs) and Chroline and Efficiency of Ventilation for an Indoor Swimming Pool (일개 실내수영장의 공기 중 염소 및 트리할로메탄의 노출평가 및 환기 효율 평가)

  • Park, Hae-Dong;Park, Hyun-Hee;Shin, Jung-Ah;Kim, Tae-Ho
    • Journal of Environmental Health Sciences
    • /
    • v.36 no.5
    • /
    • pp.402-410
    • /
    • 2010
  • The objectives of this study were to evaluate the air quality surrounding an indoor swimming pool, to estimate the cancer risk based on the airborne exposure to trihalomethanes (THMs), and to examine the ventilation efficiency by Computational Fluid Dynamics (CFD). Chlorine and THMs were measured poolside, and in the staff room and reception area. The indoor swimming pool was modeled using the Airpak program, with ventilation drawings and actual survey data. Temperature, flow and mean age of the air were analyzed. Levels of chlorine poolside, and in the staff room, and reception area were $203\;{\mu}g/m^3$, $5\;{\mu}g/m^3$, and $10\;{\mu}g/m^3$, respectively. Chloroform was the dominant THM in all sampling sites and mean concentrations were $16.30\;{\mu}g/m^3$, $0.51\;{\mu}g/m^3$, and $0.06\;{\mu}g/m^3$ poolside, in the staff room and reception area, respectively. Bromodichloromethane and Dibromochloromethane levels were respectively estimated as $10.3\;{\mu}g/m^3$ and $1.7\;{\mu}g/m^3$ poolside, $1.3\;{\mu}g/m^3$ and $0.1\;{\mu}g/m^3$ in the staff room, and were not detected in the reception area. The cancer risks from inhalation exposure to THMs were estimated between $3.37{\times}10^{-7}$ and $1.84{\times}10^{-5}$. A short circulation phenomenon was observed from the supply air vents to the exhaust air vents located in the ceiling. A high temperature layer was formed within one meter of the ceiling, and a low temperature layer was formed under this layer due to the low velocity and high temperature of the supply air, and the improper locations of the supply air vents and exhaust air vents. The stagnation was evident at the above adult pool and the mean age of the air was 22 minutes. Disinfection by-products in the indoor swimming pool were present in higher concentrations than in the outdoor air. In order to increase the removal of pollutants, adjustment was required of the supply air volume and the supply/exhaust position.

A Study on Energy Saving Effect from Automatic Control of Air Flowrate and Estimation of Optimal DO Concentration in Oxic Reactor of Wastewater Treatment Plant (하수처리장의 포기조 최적 DO 농도 산정 및 공기송풍량 자동제어를 통한 에너지 절감 효과 도출)

  • Kim, Min Han;Ji, Seung Hee;Jang, Jung Hee
    • Journal of Energy Engineering
    • /
    • v.23 no.2
    • /
    • pp.49-56
    • /
    • 2014
  • It is important to keep stable effluent water quality and minimize operation cost in biological wastewater treatment plant. However, the optimal operation is difficult because of the change of influent flow rate and concentrations, the nonlinear dynamics of microbiology growth rate and other environmental factors. Therefore, many wastewater treatment plants are operated for much more redundant oxygen or chemical dosing than the necessary. In this study, the optimal control scheme for dissolved oxygen (DO) is suggested to prevent over-aeration and the reduction of the electric cost in plant operation while maintaining the dissolved oxygen (DO) concentration for the metabolism of microorganisms in oxic reactor. For optimal control, The oxygen uptake rate (OUR) is realtime measured for the identification of influent characterization and the identification of microorganisms' oxygen requirement in oxic reactor. Optimal DO seT-Point needed for the microorganism is suggested based on real time measurement of oxygen uptake of microorganism and the control of air blower. Therefore, both stable effluent quality and minimization of electric cost are satisfied with a suggested optimal setpoint decision system by providing the necessary oxygen supply requirement to the microorganisms coping with the variations of influent loading.

Development of CFD model for Predicting Ventilation Rate based on Age of Air Theory using Thermal Distribution Data in Pig House (돈사 내부 열환경 분포의 공기연령 이론법 적용을 통한 전산유체역학 환기 예측 모델 개발)

  • Kim, Rack-woo;Lee, In-bok;Ha, Tae-hwan;Yeo, Uk-hyeon;Lee, Sang-yeon;Lee, Min-hyung;Park, Gwan-yong;Kim, Jun-gyu
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.6
    • /
    • pp.61-71
    • /
    • 2017
  • The tracer gas method has an advantage that can estimate total and local ventilation rate by tracing air flow. However, the field measurement using tracer gas has disadvantages such as danger, inefficiency, and high cost. Therefore, the aim of this study was to evaluate ventilation rate in pig house by using the thermal distribution data rather than tracer gas. Especially, LMA (Local Mean Age), which is an index based on the age of air theory, was used to evaluate the ventilation rate in pig house. Firstly, the field experiment was conducted to measure micro-climate inside pig house, such as the air temperature, $CO_2$ concentration and wind velocity. And then, LMA was calculated based on the decay of $CO_2$ concentration and air temperature, respectively. This study compared between LMA determined by $CO_2$ concentration and air temperature; the average error and root mean square error were 3.76 s and 5.34 s. From these results, it was determined that thermal distribution data could be used for estimation of LMA. Finally, CFD (Computational fluid dynamic) model was validated using LMA and wind velocity. The mesh size was designed to be 0.1 m based on the grid independence test, and the Standard $k-{\omega}$ model was eventually chosen as the proper turbulence model. The developed CFD model was highly appropriate for evaluating the ventilation rate in pig house.

Numerical Analysis of Gas Leakage and Diffusion Behavior in Underground Combined Cycle Power Plant (지하 복합발전 플랜트 내에서의 가스 누출 및 확산 거동에 관한 수치해석 연구)

  • Bang, Joo Won;Lee, Seong Hyuk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.118-124
    • /
    • 2017
  • In this study, a numerical simulation was performed using commercial code Fluent(v.17.1). The underground Combined Cycle Power Plant (CCPP) was simplified to analyze the methane gas leakage with the crack size and position. In addition, extensive numerical simulations were carried out for different crack sizes from 10 mm to 20 mm. The crack position is the gas leakage, which is assumed to be near the pipe elbow and the gas turbine. A total of 4 cases were compared and analyzed. To analyze the gas leakage, the concept of the Lower Flammable Limit (LFL) was applied. The leakage distance was defined in the longitudinal direction, and the transverse direction was estimated and quantitatively analyzed. As a result, the leakage distance in the longitudinal direction varies by 52.3 % depending on the crack size at the same crack position. Moreover, the maximum difference was 34.8 % according to the crack position when the crack sizes are identical. As jet flow impacts on the obstacle and changes its direction, the recirculation flows are formed. These results are expected to provide useful data to optimize the location and number of gas detections in confined spaces, such as underground CCPP.

Noise Protection Roof: Partial Opening Effect for Noise Reduction (철도용 터널형 방음벽 개발연구: 설계 방향)

  • Kim, Tae-Min;Kim, Jeung-Tae
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.6
    • /
    • pp.522-532
    • /
    • 2015
  • In the present study, a tunnel type soundproof wall with partial opening is proposed to reduce the environmental noise caused by railway vehicles traveling on bridges, which affects residents of high-rise apartment buildings; the study also attempts to minimize load due to wind and the weight of the wall. Applying the principles of computational fluid dynamics and structural mechanics, and the ray tracing method, a reduction in noise as well as of the overall weight of the soundproof walls is estimated. Analysis results show that the proposed soundproof wall with a partial opening weighs less, while reducing the wind loading by up to 30%. To prevent direct propagation of sound through openings in the wall, an acoustic louver, which is a type of silencer, could be considered for the opening. In order to achieve a similar noise effect with existing insulation material, the fluid flow and the insulation effect of the acoustic louver are analyzed. As the considered opening is in the range of 30~40% of the total length of the soundproof wall, the noise effect and wind load are reduced by 10dB and 25% respectively. Consequently, opening some part of tunnel type soundproof walls and installing louvers on the wall openings can have the effects of weight-reduction and reduced wind load. If a partial opening is applied with proper sound material application, a gain of an additional 5~10dB of noise reduction can be achieved.

Anthracite Oxygen Combustion Simulation in 0.1MWth Circulating Fluidized Bed (0.1 MWth 급 순환유동층에서의 무연탄 연소 전산유체역학 모사)

  • Go, Eun Sol;Kook, Jin Woo;Seo, Kwang Won;Seo, Su Been;Kim, Hyung Woo;Kang, Seo Yeong;Lee, See Hoon
    • Korean Chemical Engineering Research
    • /
    • v.59 no.3
    • /
    • pp.417-428
    • /
    • 2021
  • The combustion characteristics of anthracite, which follow a complex process with low reactivity, must be considered through the dynamic behavior of circulating fluidized bed (CFB) boilers. In this study, computational fluid dynamics (CFD) simulation was performed to analyze the combustion characteristics of anthracite in a pilot scale 0.1 MWth Oxy-fuel circulating fluidized bed (Oxy-CFB) boiler. The 0.1MWth Oxy-CFB boiler is composed of combustor (0.15 m l.D., 10 m High), cyclone, return leg, and so on. To perform CFD analysis, a 3D simulation model reactor was designed and used. The anthracite used in the experiment has an average particle size of 1,070 ㎛ and a density of 2,326 kg/m3. The flow pattern of gas-solids inside the reactor according to the change of combustion environment from air combustion to oxygen combustion was investigated. At this time, it was found that the temperature distribution in air combustion and oxygen combustion showed a similar pattern, but the pressure distribution was lower in oxygen combustion. addition, since it has a higher CO2 concentration in oxygen combustion than in air combustion, it can be expected that carbon dioxide capture will take place actively. As a result, it was confirmed that this study can contribute to the optimized design and operation of a circulating fluidized bed reactor using anthracite.