• 제목/요약/키워드: flow control structure

검색결과 570건 처리시간 0.025초

의료용 CSF 제어 밸브 설계를 위한 유동/구조 상호작용 해석 (A Flow/structure Interaction Analysis for the Design of Medical CSF-Flow Control Valve)

  • 원찬식;허남건;이종선
    • 한국전산유체공학회지
    • /
    • 제6권1호
    • /
    • pp.40-46
    • /
    • 2001
  • Pressure-flow control characteristics of a commercially available cerebrospinal flow(CSF) control shunt valve was studied using flow/structure interaction analyses. Pre-stress of the valve diaphragm(membrane) was accounted for the simulation of an actual valve. The present results were in good agreement with the valve specification listed in the commercially available CSF control valve. The flow/structure interaction analysis of the present study can be effectively used to design a variety of CSF control shunt valves.

  • PDF

형상기업합금을 이용한 유량제어밸브의 위치제어 적용 시뮬레이션 (A Simulation Study of Position Control Performance of a Shape Memory Alloy-Actuated Flow Control Valve)

  • 최수현;이한석;국금환
    • 한국정밀공학회지
    • /
    • 제16권8호
    • /
    • pp.79-87
    • /
    • 1999
  • In this study, a new type of flow control valve which is SMA actuated flow control valve is presented. The flow control valve is actuated by a small motion of shape memory alloy. The performance of this valve as a position control component is analyzed by computer simulation. A variable structure control technique is applied for the position control by the flow control valve. The position control performance of the valve is evaluated on the step responses of a PID control by a electrohydraulic servo valve. For the simulation study, first, the mathematical model of a hydraulic system, which is consisted of the flow control valve and a hydraulic cylinder, is formulated. This mathematical model and the designed variable structure control algorithm are then combined by the MATLAB software. The same sequence of work is carried out for the PID position control system with a electrohydraulic servo valve. The simulation results show the validity of the new type of flow control valve as a variable position control component.

  • PDF

Experimental and Computational Study on Separation Control Performance of Synthetic Jets with Circular Exit

  • Kim, Minhee;Lee, Byunghyun;Lee, Junhee;Kim, Chongam
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제17권3호
    • /
    • pp.296-314
    • /
    • 2016
  • This paper presents experimental and computational investigations of synthetic jets with a circular exit for improving flow control performance. First, the flow feature and vortex structure of a multiple serial circular exit were numerically analyzed from the view point of flow control effect under a cross flow condition. In order to improve separation control performance, experimental and numerical studies were conducted according to several key parameters, such as hole diameter, hole gap, the number of hole, jet array, and phase difference. Experiments were carried out in a quiescent condition and a forced separated flow condition using piezoelectrically driven synthetic jets. Jet characteristics were compared by measuring velocity profiles and pressure distributions. The interaction of synthetic jets with a freestream was examined by analyzing vortical structure characteristics. For separation control performance, separated flow over an airfoil at high angles of attack was employed and the flow control performance of the proposed synthetic jet was verified by measuring aerodynamic coefficient. The circular exit with a suitable hole parameter provides stable and persistent jet vortices that do beneficially affect separation control. This demonstrates the flow control performance of circular exit array could be remarkably improved by applying a set of suitable hole parameters.

압전 작동기를 이용한 유체 유기 진동의 능동 제어 (Active Control of Flow-Induced Vibration Using Piezoelectric Actuators)

  • 한재홍
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.446-451
    • /
    • 2003
  • This paper presents some examples of active control of flow-induced vibration using piezoelectric actuators. The flutter phenomenon, which is the dynamic instability of structure due to mutual interaction among inertia, stiffness, and aerodynamic forces, may cause catastrophic structural failure, and therefore the active flutter suppression is one of the main objectives of the aeroelastic control. Active flutter control has been numerically and experimentally studied for swept-back lifting surfaces using piezoelectric actuation. A finite element method, a panel aerodynamic method, and the minimum state space realization are involved in the development of the governing equation, which is efficiently used for the analysis of the system and design of control laws with modern control framework. The active control suppressed flow-induced vibrations and extended the flutter speed around by 10%. Another representative flow-induced vibration phenomenon is the oscillation of blunt bodies due to the vortex shedding. In general, it is quite difficult to set up the numerical model because of the strong non-linearity of the vortex shedding structure. Therefore, we applied adaptive positive position feedback controller, which requires no pre-determined model of the plant, and successfully suppressed the flow-induced vibration.

  • PDF

변탄성 스프링을 이용한 고정밀 직동형 릴리프 밸브 (High-Precision Direct-Operated Relief Valve with a Variable Elasticity Spring)

  • 김성동
    • 드라이브 ㆍ 컨트롤
    • /
    • 제17권4호
    • /
    • pp.87-96
    • /
    • 2020
  • In this study, a variable elasticity spring was applied to improve the pressure control precision of conventional relief valves. The equilibrium equation of the forces acting on the valve poppet was derived; it is demonstrated that matching the elastic rate of the pressure-adjusting coil spring to the equivalent elastic rate of the flow force improved the pressure override. The procedures that were used to design the variable elasticity spring are presented, and some applications of the variable elasticity spring are also introduced. Computer simulations were used to analyze three cases: a poppet-closed flow force structure, a poppet-open flow force structure with a constant elasticity spring, and a structure containing a variable elasticity spring. It is confirmed that the pressure control precision of the relief valve can be significantly improved upon by applying a variable elasticity spring to the poppet-open flow force structure.

토석류 차단시설의 도로적용 설계 방안 (Applicable Road Design Method of Debris-Flow Control Structure)

  • 이용수;김진환;유준;정하익
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 세계 도시지반공학 심포지엄
    • /
    • pp.243-246
    • /
    • 2009
  • Localized rainfall due to abnormal climate has caused extensive damages killing several tens to hundreds of people for yearly basis. The typhoon 'Lusa' of year 2002 has resulted 5,400 billion won of property damage and the damages for roads were approximated to be 2,860 billion won at 12,377 locations holding 53% damage of total. The recent typhoon, 'Aewinia' of yeat 2006 caused the 1,400 billion-won property damage including sweeping and flooding of 127 roads and 65 rivers, respectively. There are needs to minimize the damages for important structures for repeated heavy rainfalls every year and, especially, because debris flow might be a main cause of road damage, the design criteria and guideline for roads are required to be improved. Therefore, this paper presented design method of debris-flow control structure for road protection.

  • PDF

점진적 실행을 통한 소프트웨어의 구조 그래프 생성 (Constructing Software Structure Graph through Progressive Execution)

  • 이혜련;신승훈;최경희;정기현;박승규
    • 한국컴퓨터정보학회논문지
    • /
    • 제18권7호
    • /
    • pp.111-123
    • /
    • 2013
  • 소프트웨어의 취약성을 검증하기 위하여 소프트웨어의 구조를 유추하여 유추된 구조를 활용하여 테스트하는 방법이 주목받고 있다. 이와 같은 방법을 사용하기 위해서 효과적인 소프트웨어의 구조 유추 방법이 요구된다. 많이 사용되는 DFG(Data Flow Graph), CFG(Control Flow Graph) 이나 CFA(Control Flow Automata)와 같은 그래프나 트리 방식은 소프트웨어 모델을 구조적으로 표현하지 못하는 단점을 가진다. 본 논문에서는 이러한 단점을 극복할 수 있는 방법을 제시한다. 제시된 방법은 바이너리 코드에 다양한 입력데이터 들을 부여하여 입력데이터별 CFG를 생성하고, 생성된 CFG들이 구조적으로 표현될 수 있도록 계층적 제어 흐름 그래프(Hierarchical Control Flow Graph, HCFG)를 작성한다. 또한 제안하는 HCFG을 생성하는데 요구되는 그래프의 구성요소와 점진적 그래프 생성 알고리듬도 제시한다. 제안한 방법론을 공개된 SMTP(Simple Mail Transfer Protocol) 서버 프로그램에 적용시켜 소프트웨어의 모델을 작성하는 실험을 수행하고, 생성된 모델과 실제 소프트웨어 구조를 비교 분석한다.

유체 진동기에 의해 생성된 제트의 유동가시화 (Flow Visualization of a jet generated by a sweeping jet actuator)

  • 박통일;김대겸
    • 한국가시화정보학회지
    • /
    • 제14권3호
    • /
    • pp.22-27
    • /
    • 2016
  • A sweeping jet actuator (SJA) is an instrument generating pulsing jets with no moving elements. Because of its simple design and high durability to shock and vibration, SJA has recently drawn increasing attention for the application to flow control such as aerodynamic control of a wing and thrust vectoring of a jet engine. However, experimental and numerical studies on SJA have been limited to internal flow structure of SJA. In this study, we investigated the flow structure and its variation in the outlet of SJA. We carried out the experiment to understand the flow structures using PIV (Particle Image Velocimetry). The flow structure varies with a degree of the outlet and volume flow rate. There is leaking process during half jetting cycle. The process of the main jet can occur because the jet moving time increased from one side to the other side.

다단계 온도 감지막을 가진 고영역 흐름측정용 마이크로 흐름센서 (A Micro-Flow Sensor With Multiple Temperature Sensing Elements for Wide Range Flow Velocity Measurement)

  • 정완영;김태용;서용수
    • 제어로봇시스템학회논문지
    • /
    • 제12궈1호
    • /
    • pp.85-92
    • /
    • 2006
  • A new silicon micro flow sensor with multiple temperature sensing elements was proposed and fabricated in considering wide range flow velocity measuring device. Thermal mass flow sensor measures the asymmetry of temperature profile around the heater which is modulated by the fluid flow. A micro mass flow sensor was normally composed of a central heater and a pair of temperature sensing elements around it. A new 2-D wide range micro flow sensor structure with three pairs of temperature sensing elements and a central heater was proposed and numerically simulated by Finite Difference Formulation to confirm the feasibility of the wide flow range sensor structure. To confirm the simulation result, the new flow sensor was fabricated on silicon substrate and the basic flow sensing properties of the sensor were measured.

유체력을 이용한 직동식 비례 유량 조절 밸브에 관한 연구 (A Study on a Direct-Type Proportional Flow Control Valve Utilizing Flowforces)

  • 배상기;현장환;이정오
    • 한국정밀공학회지
    • /
    • 제15권4호
    • /
    • pp.68-75
    • /
    • 1998
  • A one-stage direction and flow control valve was studied theoretically and experimentally. A direction and flow control valve maintains a constant flow rate by changing the spool-orifice area under the variation of valve pressure drop, since the spool-orifice area is varied by the action of flowforces on the spool. A direction and flow control valve has the advantage of simple and low-cost structure compared to a conventional flow control valve utilizing a pressure regulating spool which regulates the pressure drop caused by flow through the metering orifice. The static and dynamic characteristics of a one-stage direction and flow control valve was analyzed. Experimental results on the flow control characteristics of the manufactured valve show satisfactory agreement with simulation results.

  • PDF