• Title/Summary/Keyword: flow birefringence

Search Result 39, Processing Time 0.018 seconds

A study of birefringence, residual stress and final shrinkage for precision injection molded parts

  • Yang, Sang-Sik;Kwon, Tai-Hun
    • Korea-Australia Rheology Journal
    • /
    • v.19 no.4
    • /
    • pp.191-199
    • /
    • 2007
  • Precision injection molding process is of great importance since precision optical products such as CD, DVD and various lens are manufactured by those process. In such products, birefringence affects the optical performance while residual stress that determines the geometric precision level. Therefore, it is needed to study residual stress and birefringence that affect deformation and optical quality, respectively in precision optical product. In the present study, we tried to predict residual stress, final shrinkage and birefringence in injection molded parts in a systematic way, and compared numerical results with the corresponding experimental data. Residual stress and birefringence can be divided into two parts, namely flow induced and thermally induced portions. Flow induced birefringence is dominant during the flow, whereas thermally induced stress is much higher than flow induced one when amorphous polymer undergoes rapid cooling across the glass transition region. A numerical system that is able to predict birefringence, residual stress and final shrinkage in injection molding process has been developed using hybrid finite element-difference method for a general three dimensional thin part geometry. The present modeling attempts to integrate the analysis of the entire process consistently by assuming polymeric materials as nonlinear viscoelastic fluids above a no-flow temperature and as linear viscoelastic solids below the no-flow temperature, while calculating residual stress, shrinkage and birefringence accordingly. Thus, for flow induced ones, the Leonov model and stress-optical law are adopted, while the linear viscoelastic model, photoviscoelastic model and free volume theory taking into account the density relaxation phenomena are employed to predict thermally induced ones. Special cares are taken of the modeling of the lateral boundary condition which can consider product geometry, histories of pressure and residual stress. Deformations at and after ejection have been considered using thin shell viscoelastic finite element method. There were good correspondences between numerical results and experimental data if final shrinkage, residual stress and birefringence were compared.

Shear-induced microstructure and rheology of cetylpyridinium chloride/sodium salicylate micellar solutions

  • Park, Dae-Geun;Kim, Won-Jong;Yang, Seung-Man
    • Korea-Australia Rheology Journal
    • /
    • v.12 no.3_4
    • /
    • pp.143-149
    • /
    • 2000
  • In this article, we considered shear-induced microstructure and rheological behavior of micellar solutions of cationic surfactant, cetylpyridinium chloride (CPC) in the presence of a structure-forming additive, sodium salicylate (NaSal). Shear viscosity, shear moduli and flow birefringence were measured as functions of the surfactant and additive concentrations. In the presence of NaSal, the micellar solution exhibited the non-linear rheological behavior due to the formation of supramolecular structures when the molar ratio of NaSal to CPC exceeded a certain threshold value. Flow birefringence probed the change in micelle alignment under shear flow. At low shear rates, the flow birefringence increased as the shear rate increased. On the other hand, fluctuation of flow birefringence appeared from the shear rate near the onset of shear thickening, which was caused by shear-induced coagulation or aggregation. These results were confirmed by the SEM images of in situ gelified micelle structure through sol-gel route.

  • PDF

Flow-Induced Birefringence of Polymers in the Region of Abrupt Thickness Transition (두께가 급격히 변하는 영역에서 고분자 유동에 의한 복굴절)

  • Lee, H.S.;Isayev, A.I.
    • Transactions of Materials Processing
    • /
    • v.18 no.1
    • /
    • pp.20-25
    • /
    • 2009
  • A finite element analysis was carried out for a 4:1 planar contraction die for polymer melts using the viscoelastic constitutive equation of Leonov. Viscoelastic fluids showed significant differences in pressure drop and birefringence in contraction and expansion flows. The pressure drop was higher and the birefringence smaller in expansion than in contraction flow. The difference increased with increasing flow rate. The nonlinear Leonov model was shown to describe the viscoelastic effects observed in experiments.

A Study on The Change of Birefringence Structure in Injection and Injection/compression Molded Products (사출 및 사출/압축 성형품 내에서의 복굴절 구조 변화에 관한 연구)

  • Min, I.K.;Lee, K.B.;Yoon, K.H.
    • Transactions of Materials Processing
    • /
    • v.19 no.5
    • /
    • pp.296-304
    • /
    • 2010
  • It is still needed to study the effect of process conditions on the final properties of injection-molded parts for producing precision optical products. Especially, the optical anisotropy, i.e., birefringence, is a significant factor to affect the function of many optical components. In the present study we have focused on the effect of holding and compression processes on the birefringence remaining in the transparent disc by examining the gap-wise distribution of birefringence and extinction angle. As a result, two extra birefringence and extinction peaks near the center in thickness direction showed the effect of holding pressure, which came from the flow in packing stage. However, more uniform birefringence distribution than injection-only cases could be found in injection/compression cases. Depends on the process condition even the flow reversal could be found from the distribution of extinction angle. Finally, graphical representation of optical indicatrix was added for better understanding the final structure of injection-only and injection/compression cases.

Numerical Analysis of ]Residual Stresses and Birefringence in Injection/Compression Molded Center-gated Disks (I) - Modeling and Basic Results - (사출/압축 성형 Center-Gated 디스크에서의 잔류 응력과 복굴절의 수치 해석 (I) - 모델링 및 기본 결과 -)

  • Lee, Young-Bok;Kwon, Tai-Hun;Yoon, Kyung-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.11
    • /
    • pp.2342-2354
    • /
    • 2002
  • The present study has numerically predicted both the flow -induced and thermally-induced residual stresses and birefringence in injection o. injection/compression molded center -gated disks. Analysis system for entire molding process was developed based on an ap propriate physical modeling including a nonlinear viscoelastic fluid model, stress-optical law, a linear viscoelastic solid model, free volume theory for density relaxation phenomena and a photoviscoelasticity and so on. Part I presents physical modeling a nd typical numerical analysis results of residual stresses and birefringence in the injection molded center-gated disk. Thermal residual stress was found to be extensional near the center, compressive near the surface and tend to become toward tensional at the surface. A double-hump profile was obtained across the thickness in birefringence distribution: nonzero birefringence is found to be thermally induced, the outer peak is due to the shear flow and subsequent stress relaxation during the filling stage a nd the inner peak is due to the additional shear flow and stress relaxation during the packing stage. Predicted birefringence including both the flow -induced and thermally-induced one becomes quite similar to the experimental one.

Numerical Simulation of Flow-Induced Birefringence in Injection Molded Disk

  • Lee H. S.;Shyu G. D.;Isayev A. I.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.04a
    • /
    • pp.41-47
    • /
    • 2003
  • This study is an attempt to understand the birefringence and stress development in an injection molded disk. A computer code was developed to simulate all three stages of the injection molding process - filling, packing and cooling by finite element method. The constitutive equation used here was compressible Leonov model. The PVT relationship was assumed to follow the Tait equation. The flow-induced birefringence was related to the calculated flow stresses through the linear stress-optical law. The predicted birefringence was in good agreement with the experimental results.

  • PDF

Numerical simulation of flow-induced birefringence in injection molded disk

  • Shyu, Goang-Ding;Avraam I. Isayev;Lee, Ho-Sang
    • Korea-Australia Rheology Journal
    • /
    • v.15 no.4
    • /
    • pp.159-166
    • /
    • 2003
  • This study is an attempt to understand the birefringence and stress development in an injection molded disk. A computer code was developed to simulate all three stages of the injection molding process filling, packing and cooling by finite element method. The constitutive equation used here was compressible Leonov model. The PVT relationship was assumed to follow the Tait equation. The flow-induced birefringence was related to the calculated flow stresses through the linear stress-optical law. The predicted birefringence was in good agreement with the experimental results.

A Study on Influence of Parameters and Characteristics in the Injection Process on the Birefringence and Refractive Index for Pickup Lens (Pickup 렌즈의 사출조건이 복굴절 및 굴절율에 미치는 영향에 관한 연구)

  • Lee, Seung-Joon;Hyun, Dong-Hoon
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.6
    • /
    • pp.21-28
    • /
    • 2007
  • Injection molding process factors such as molding temperature, injection pressure, flow rate and flow velocity, must be controlled properly in filling and packing phases in the injection molding process. In this study, effects of these factors on the injection molding were investigated through the flow analysis for birefringence and refractive index for pickup lens. This paper presents the birefringence and refractive index reduced with increasing the holding pressure and also the holding pressure time. And there are interaction with birefringence and fill time in the injection process. The optimal conditions through DOE are validated by using injection molding analysis.

Numerical Analysis of Residual Stresses and Birefringence in Injection/Compression Molded Center-gated Disks (II) - Effects of Processing Conditions - (사출/압축 성형 Center-gated 터스크에서의 잔류 응력과 복굴절의 수치 해석 (II) - 공정조건의 영향 -)

  • Lee, Young-Bok;Kwon, Tai-Hun;Yoon, Kyung-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.11
    • /
    • pp.2355-2363
    • /
    • 2002
  • The accompanying paper, Part 1, has presented the physical modeling and basic numerical analysis results of both the flow-induced and thermally-induced residual stress and birefringence in injection molded center gated disks. The present paper, Part II, has attempted to investigate the effects of various processing conditions of injection/compression molding process on the residual stress and birefringence. The birefringence is significantly affected by injection melt temperature, packing pressure and packing time. Birefringence in the shell layer increases as melt temperature gets lower. The inner peak of birefringence increases with packing time and packing pressure. On the other hand, packing pressure, packing time and mold wall temperature affect the thermally-induced residual stress rather significantly in the shell layer, but insignificantly in the core region. Injection/compression molding has been found to reduce the birefringence in comparison with the conventional injection molding process. In particular, mold closing velocity and initial opening thickness in the compression stage of injection/compression molding process have significant effect on the flow-induced birefringence, but not on tile thermal residual stress and the thermally induced birefringence.

Influence of Injection Molding Conditions on the Birefringence of Disks (사출성형 조건이 디스크의 복굴절에 미치는 영향)

  • Lee, Ho-Sang;Park, Min-Gyu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.5
    • /
    • pp.28-33
    • /
    • 2010
  • A computer code was developed to simulate all three stages of the injection molding process: filling, packing and cooling by finite element method. The constitutive equation used here was compressible Leonov model. The PVT relationship was assumed to follow the Tait equation. The flow-induced birefringence was related to the calculated flow stresses through the linear stress-optical law. Based on the simulation, the Taguchi method was used to investigate the influences of injection molding conditions on the birefringence of a center gate disk. In addition, the optimal processing conditions were selected to minimize the birefringence and the birefringence difference along the positions of the disk.