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Numerical simulation of flow-induced birefringence in injection molded disk
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Abstract

This study is an attempt to understand the birefringence and stress development in an injection molded disk.
A computer code was developed to simulate all three stages of the injection molding process filling, packing
and cooling by finite element method. The constitutive equation used here was compressible Leonov model.
The PVT relationship was assumed to follow the Tait equation. The flow-induced birefringence was related
to the calculated flow stresses through the linear stress-optical law. The predicted birefringence was in good

agreement with the experimental results.
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1. Introduction

Compact optical disks have become increasingly used for
information storage in recent years (Qjima et al., 1986;
Takeshima er al., 1986). The optical quality of molded
parts is affected by the occurrence of frozen-in birefrin-
gence. The birefringence in molded parts is recognized to
appear from two main sources (Isayev and Hieber, 1980;
Isayev, 1983; 1987; 1991; Wimberger-Friedl, 1995). The
first 1s flow-induced birefringence, which is a consequence
of shear and normal stresses developing during cavity fill-
ing and leading to orientation of molecular chains. The sec-
ond source of birefringence is nonequilibrium change of
density and shrinkage, and the viscoelastic and photo-vis-
coelastic behavior of the polymer during the inhomoge-
neous rapid cooling through the glass transition
temperature resulting in thermal birefringence. The bire-
fringence of molded parts is a consequence of the interplay
of these phenomena.

In the melt state, the flow-induced birefringence is
related to the flow stresses through the well-known linear
stress-optical rule (Janeschitz-Kriegl, 1983). The problem
of flow-induced stresses and orientation is modeled on the
basis of the nonlinear viscoelastic constitutive equation (Yu
et al., 1992; Famili et al., 1991; Shyu et al., 1995; Guo et
al., 1999; Kim et al., 1999; Lee et al., 2002; Chen et al.,
2002). Isayev and Hieber (1980) were among the first who
proposed theoretical approach to relate the nonlinear vis-
coelasticity of polymers to the development of frozen-in
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molecular orientation (birefringence) in moldings.

Baaijens (1991) and Flaman (1993) used the compress-
ible Leonov model, which is a nonlinear viscoelastic
model, to simulate the injection molding cycle and the
residual flow stresses for a strip mold.

Kwon et al., (1999; 2002) developed a numerical anal-
ysis system using a finite difference method and studied
the distribution of birefringence in a center-gated disk after
injection molding and injection/compression molding pro-
cessing using the Leonov model.

In this study, we have developed a numerical simulation
program using finite element method for the injection
molding of a center-gated disk, considering all three stages
of the injection molding process filling, packing and cool-
ing. The constitutive equation used here was compressible
Leonov model (Shyu et al., 1993). The PVT relationship
was assumed to follow the Tait equation. Through the lin-
ear stress-optical law (Janeschitz-Kriegl, 1983), the flow-
induced birefringence was related to the flow stresses cal-
culated with Leonov model. The results of numerical sim-
ulation were compared with the corresponding experi-
mental data (Yoon, 1995).

2. Theory

2.1. Governing equations

Very often the thickness of a cavity is much smaller than
planar dimensions. Therefore, in a simulation of flow in a
thin cavity, the velocity component in the gapwise direc-
tion is assumed to be equal to zero.

The momentum equations in the absence of inertia and
body forces are:
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where x and y are planar directions and z is the gapwise
direction, and o represents the total stress.

The continuity equation for a compressible two-dimen-
sional flow is:

P42 (pr)+2(p%) =0 3

where v, and v, are velocity components in the x and y
directions and the density p is assumed to follow the Tait
equation:

-1

p(P,T) = Po(T){l—C ln[l +B(_T)}} €
where C is a constant and B is a function of temperature.

In a nonisothermal problem, the momentum and the con-
tinuity equations are coupled with the energy equation.
Since the transverse dimension in a thin cavity is much
smaller than the planar dimensions, the thermal conduc-
tivity in the planar dimensions is ignored compared to that
in the gapwise direction. Then the energy equation is:

aT\_ o JT
sl )4
where C,, k and @ are specific heat, thermal conductivity,
and dissipation function, respectively. The dissipation func-
tion is given as

D=2nys-tre +24n9"2|:1¢(—123———)+tr£2—3:t (6a)
where e= *( W+ Vv ). (6b)

v is the velocity vector, I; and 1, are the invariants of the
elastic strain tensor C,, and 1), 6, and s are described in
the following paragraph.

By employing the Leonov constitutive model, the stress
field can be related to the velocity gradient field as follows:

0= —P8+1os(Vo+ W )+z”kc )

where P is the pressure, s is a rheological parameter lying
between zero and one, and 7, and 6, are the ¥ mode shear
viscosity and relaxation time, respectively, and C; is the
elastic strain tensor for the ¥* mode of Leonov model.

The parameters 7, and 6, are temperature dependent
quantities based on a WLF temperature shift factor (Isayev,
1991), namely n«(T) = n(T,) - ar/ar, and

61 = 6(T,) - ayay,

where

160

ar, T<T,
ar={ [ C(T-T,) ®)
exp[ C(T= Tref) T>T,

T, is the reference temperature, T, is the glass transition
temperature, and C, and C, are constants. The zero shear
rate viscosity function 7}, is defined as

Mo=3XN/(1-s5)
k

In addition, C is the elastic strain tensor of the k¥ mode
governed by

1
- VYT'gk_gk' V‘~’+2_9k(£k'£k_=6) =0 e

D

Di&
where QC is the substantial derivative of C, with respect
to time.

9
D =2c+v Ve, (10)

2.2. Numerical formulations

Solution of the governing equations with a set of appro-
priate boundary conditions provides the velocity and the
pressure profiles. The boundary of a cavity during flow
consists of a melt front, impermeable boundaries, and a
gate. In the melt front, one may assume that the pressure is
equal to zero and can use this as a reference pressure. In
the impermeable boundary region, the melt is in contact
with the boundary of the mold or insert, and the normal
velocity components vanish. The flow rate is usually spec-
ified at the gate or at the entry. In addition, symmetry
boundary conditions at the centerline and no slip velocity
at the solid wall of the cavity are assumed. Thus, the
boundary conditions may be summarized as:

=0 atz=h an
P _ Iy _ -
5 =5 =0 atz=0 12)
P =0 at the melt front (13)
Q=Q, at the gate or entry (14)
Other boundary conditions. on temperature are:
T=T, at z=h (15
aT_ -
az_o at z=0 (16)

By substituting Eq. (7) into the Eq. (1) and (2), and inte-
grating the results with respect to z and using the sym-
metric boundary conditions, Eq. (12), the velocity
gradients in the absence of normal forces are:

v, Pz

F=%= (17)
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dv, Pz
=== 18
i, (8)
where:
- I}
.= ”°s+5_vx§ ekaz,k (19)
81
N
My=Nos+5 - 9v 24,6 (20)
82

Integration of Eq. (17) and (18), using Eq. (11), leads to:

_ (9th

=Gl de Q1)

81 1 Z 22
= —|"2 4
y ay-‘z le Z ( )

With substitution of Eq. (21) and (22) into the Eq. (3),
the governing equation for pressure is:

oen-3(sy oo >
where:
G=1t (gf;—’,)dz (24)
H=1(2) % e (25)
.= (e pde) (26)
Sy = fo(af; pdz');z—j @nN

The control-volume finite element method (Wang er al.,
1986; Isayev, 1991) with triangular elements and linear
shape functions is used to solve Eq. (23), with G and H
taken to be constant in each control volume, S, and S, to be
constant in each element. As it is seen, in the simulations
governing transfer equations are calculated in Cartesian
coordinate. However, to avoid cumbersome numerical cal-
culations, constitutive equation is solved in cylindrical
streamwise coordinate as shown below.

2.3. Determination of the elastic strain tensor
and birefringence

For general planar geometries, the elastic strain tensor is
determined in the streamwise coordinate system (7, 6, z),
where r is the flow direction, 8 is perpendicular to r in the
counterclockwise direction, and z is in the gapwise direc-
tion. The shear component C,, and C, are assumed to be
zero. From Eq. (9), the governing equations for the elastic
strain tensor in the streamwise coordinate system are

aC‘rr Yhrrk kg, acrr k

ot Vi a = 2(__)Crr,k+2czr,k;y

Korea-Australia Rheology Journal

_Z'Lek(c?r,k-"c rk_l +3Crr k) (28)
aC,z I 3C,Z k_ V_
8t +v, ar _r rzk+czzky
A
Z_Ok[( Crr,k+ sz,k)crz,k+ gcrz,k:| (29)
asz,k aczz k_ 1 é
at +Vr ar 20k(czr k+ sz k™ 1+ 3 sz,k) (30)
aC aC . 1 A
_é%@lf_,_ VrT{:.% = 2V7C09,k—2_9k(c(299,k— 1+ §C99,k) (3D
sz k= ( + Crz k)/crr k (32)
A= (CW—U( it Copm 1) (33)
66,k
where :
. v, W\ ()
=%=5)(5) GY
v = %§ jf%'dz' (35)
1
M= o5+ 5 C (36)
Vi ok

The values of C, at the entrance node are determined from

the fully developed steady-state solution, %‘ =0, under

isothermal conditions. C,, C,,, C,, and Cy, together with
¥ and %—I: are then determined from the governing equations

by numerical integration with all integrals by trapezoidal
quadrature (Sobhanie et al., 1989).

The flow-induced birefringence in the rz plane can be
calculated, according to the stress-optical law being

An = CL[(0,~0,) +4T2, 37

where Cf is the stress-optical coefficient at the melt state.
3. Results and discussion

The simulation was based on the experiment of Yoon
(1995). The material used is polystyrene (Styron 615APR/
DOW), and the mold is a center-gated disk. The diameter
and thickness of the disk is 10.16 cm and 0.2 cm, respec-
tively. The molding conditions are as follows: melt tem-
perature is 225°C, mold temperature is 40°C, and
volumetric flow rate is 23.8 cm®/s. The material data for PS
used in the simulation are given in Table 1 (Shyu, 1993).
315 elements with 184 nodes are used for the quarter disk,
considering symmetry of the disk. The finite element
meshes together with the location of the gate are shown in
Fig. 1.
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from H. cunea. Using degenerate primers designed
from the internal consensus sequences, a 320 bp
fragment of apoLp-IIl was amplified from RNA of
adult whole body by RT-PCR. In an attempt to
obtain the 5- and 3- ends of coding sequence, 5-
and 3-RACE PCRs were performed using gene
specific primers. The apoLp-III ¢cDNA has a length

RESULTS AND DISCUSSION

Sequence of apoLp-III gene from H. cunea
and sequence comparisons with other
apoLp-II1

Figure 1 shows the cDNA sequence of apoLp-III

H. cunea FLODLEKRFADIOKTFSEOFQA! SNSKNhODi\/NKA 54
S. litura L_LODI EKHAAE?E]KTFSEQE ANSKNT Qff VNKAN kDasDsvLQ ' o5
M. sexta AFEEMEKHAKE:OKTFSEQFNSL NSKNT QDFNKALKDGSDSVLQQLS 55
B. mori F—FKHLEH KEFE|KTLEOOFNSLT SKp AjaD KDGSVLOOL 52
G. mellonella —LQDLEKHAAEFQKTFSEQL|NJAF TNSKD[ K E KElesosvia alL 52
L. migratoria | AEAVQQL NHTIMNAAHEJL HETL GLPTP D E A TEQANAFKT K I A 54
* N - o *
H. cunea LssstLaQls LTDANGKAKEALEO[ZRQNLEK TAEEL RRAHPDV EKQANQILARDK L QA 109
S. litura LssstLQfs MTDANHKAKBALEQARONLEKTAEDLRKSHPDV EEQA;‘ELRT—‘KLQA 110
M. sexta Flss S L QGAll SDANGKAKEALEQARQNVEK TAEEL RK AHPDV EKERNAFKDK L QA 110
B. mori DANGKAKEALEQSRQNI ERTAEEL RKA HPDV EKNATIALR 107
G. mellonella N L ER TAEELRRAHPDV‘EJ;OAGALRDR 107
L. migratoria EVTT k o eAEKHQlGlSVAERQILNAFARINLINN ST HD—-— — ~AATS LNLGDQLNS — S 104
* v
H. cunea KLAKEVAANMEI QTN EKLAPKIKEAFE 163
S. litura NV EETNEKLAPKLKEAYE 164
M. sexta KKLAPKIKQAYD 164
B. mori EKLAPKIKAAYD 161
G. mellonella KKLAPQ!KSAYD 161
L. migratoria SAQEAWAPVQSALQEAAE 158
H. cunea ——»<—O— 165
S. litura -Ka 166
M. sexta —Ka 166
B. mori AKaQ 164
G. mellonella -k Q 161
L. migratoria P ;\—N 163

Fig. 1. Alignment of the amino acid sequences of insect apoLp-IIIs. Aligned amino acid sequences for apoLp-IIIs from
Spodoptera litura (AF094582), Manduca sexta (M17286), Bombyx mori (U59244), Galleria mellonella (P80703), and
Locusta migratoria (J03888). The leucines that are putatively involved in the initial contact with the lipophorin
surface are indicated by circle. Conserved residues that are probably involved in breaks and/or turns between helices
are marked by asterisks. The phenylalanine that may contribute to structural stability of a.-helix is indicated by
triangle. Identical residues and conservative replacements in apoLp-III are in box.
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0.07 second and the temperature is still high. Later, when
the temperature becomes low and the relaxation time
enlarges (meaning that the induced stresses will not relax
right away), the normal stresses near the midplane grow
again although the flow becomes even smaller. It is noted
that the normal stresses near the cavity wall does not
change during the packing stage, since the temperature
near the cavity wall is lower than the glass transition tem-
perature so that the stresses have been frozen.

The predicted transient development of the second nor-
mal stress difference oy — 0, in the filling and packing
stages is shown in Fig. 5 and 6, respectively. The shape of
the distribution of Gy — O, is similar to that of the first nor-
mal stress difference o, — 0., but the value of 6y — 0, are
one order of magnitude smaller than those of o, — 0.
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Fig. 5. Predicted transient gapwise distributions of the second
normal stress difference (Ggg— 0,,) at r = 3.07 during fill-

ing stages.
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Fig. 6. Predicted transient gapwise distributions of the second
normal stress difference (Ogy— O,)) at r=3.07 during
packing stages.
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Fig. 7. Predicted gapwise distribution of shear stress 7,, at various
radial positions at the end of filling (¢ =0.694 s).
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Fig. 8. Predicted gapwise distribution of the first normal stress
difference N, at various radial positions at the end of fill-
ing (t=0.694 s).

Fig. 7 represents the gapwise distributions of shear stress
at various radial positions. Shear stress has an almost linear
gapwise distribution with a slope depending on the prox-
imity to the melt.

Fig. 8 shows the gapwise distribution of the first normal
stress difference at various radial positions at the end of
filling. The peaks continually decrease in magnitude and
move toward the wall with increasing radial positions from
the gate.

The predicted gapwise flow birefringence distribution at
various radial positions at the end of filling stage is shown
in Fig. 9. The birefringence shows a maximum around z/
h=0.7~0.8, like the first normal stress difference. It is
noted that although the shear stress varies monotonically
with z, the birefringence exhibits a peak away from the
wall, due to the dominant effect of the first normal stress
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Fig. 9. Predicted gapwise distribution of birefringence An at var-
ious radial positions at the end of filling (z=0.694 s).
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Fig. 10. Predicted gapwise distribution of birefringence An radial
positions at the end of packing (t=6.74 s).

difference.

The predicted gapwise birefringence distribution at var-
jous radial positions at the end of packing stage with a
packing pressure of 15 MPa are shown in Fig. 10. There
are two peaks in the birefringence distribution; one near the
surface produced in the filling stage, the other near the cen-
ter produced by the additional flow in the packing stage.
The inner peak also decreases in magnitude as the radial
position increases from the gate.

Without the packing stage, the predicted flow birefrin-
gence distributions at the end of cooling stage are given in
Fig. 11. The flow-induced birefringence at the core is zero
due to the fast relaxation of the chain orientation right after
filling. Fig. 12 is the corresponding experimental results
measured by Yoon (1995). It is seen that the simulation, in
good agreement with the experimentation, shows appre-
ciable birefringence at the wall and a peak which moves

164
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Fig. 11. Predicted gapwise distribution of birefringence An at
various radial positions at the end of cooling when no
packing pressure is applied.
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Fig. 12. Measured gapwise distribution of birefringence An at
various radial positions at the end of cooling when no
packing pressure is applied.

toward the wall with increasing radial positions from the
gate. One thing to be noted is that birefringence at the cen-
ter line is zero in simulation whereas experimental data
indicate that a certain degree of birefringence exists around
the center line. The possible reason for the difference is
thermally induced residual stress is built up in the molded
part including the centerline of the cavity as shown by
Isayev (1983).

The predicted and experimental gapwise birefringence
distributions at the end of cooling stage with a packing
pressure of 15 MPa are presented in Fig. 13 and 14, respec-
tively. The predicted birefringence is in good agreement
with the experimental results such as the locations and
magnitude of the inner peaks. However, some differences
exist, such as the minimum value in the troughs, and the
magnitude near the surface. Possible reasons may be due to
inaccuracy in shift factors for viscosity and relaxation time

Korea-Australia Rheology Journal
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Fig. 13. Predicted gapwise distribution of birefringence An at
various radial positions at the end of cooling with pack-
ing pressure of 15 MPa.
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Fig. 14. Measured gapwise distribution of birefringence Arn at
various radial positions at the end of cooling with pack-
ing pressure of 15 MPa.
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Fig. 15. Predicted radial profiles of gapwise-averaged residual
birefringence <ngg— n,> with packing pressures of 0
and 15 MPa, respectively.
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at low temperatures.

The radial dependence of gapwise-averaged birefrin-
gence <fgg—N,> | = 71% (ngg—n,,)dz‘j is shown in Fig. 15.
<ngo— Nn,,> is a monotonously decreasing function of radial
position. Similar data have been reported by Greener
(1989). It is seen from the simulation results that packing
makes <ngy—n,> increase significantly near the gate.
Since there is less and slower material flow at larger radial
positions in the packing stage, a smaller increase in <rng —
n,> at larger radial position due to packing is obtained.

4, Conclusions

A computer code which used the compressible Leonov
model was developed to simulate the injection molding
cycle. The simulation was verified with corresponding
experimental measurements (Yoon, 1995) of pressure
traces, gapwise flow-induced birefringence in center- gated
disk. The simulation showed that

(1) The predicted birefringence was in good agreement
with the experimental results such as the locations and
magnitude of the peaks.

(2) When the packing pressure of 15 MPa was applied,
there were two peaks in the birefringence distribution; one
near the surface produced in the filling stage, the other near
the center produced by the additional flow in the packing
stage. The inner peak decreased in magnitude as the radial
position increased from the gate.

(3) With the packing pressure, gapwise-averaged bire-
fringence increased significantly near the gate. However,
increment of the birefringence at larger radial position was
small, since there was less and slower material flow at
larger radial positions in the packing stage.
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