• 제목/요약/키워드: flow aggregate

Search Result 305, Processing Time 0.031 seconds

Effects of Dolomite Fine Aggregate and Cement-Based Materials on Viscosity Characteristics, Flow and Flow Time of High-Strength Grout (돌로마이트 잔골재와 시멘트계 재료의 용적 구성비가 고강도 그라우트의 점도 특성, 플로우 및 유하시간에 미치는 영향)

  • Jeong, Min-Gu;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.197-198
    • /
    • 2023
  • This study was conducted as part of research and development of high-strength grout. Accordingly, dolomite aggregate was used as a filler incorporated into the high-strength grout. Dolomite aggregate has a disadvantage of increasing the viscosity of the grout due to higher generation of fine powder than other aggregates. Accordingly, in this experiment, it was confirmed that the viscosity, flow time, and flow of high-strength grout change according to the volume composition ratio of dolomite aggregate and cement-based material. All experiments were conducted based on the Korean Industrial Standard KS F 4044, and the mixing factor was applied according to the composition ratio of the binder and the filler. In the experiment, the amount of fine powder contained in the dolomite aggregate rather than the silica sand used in the past is grasped, and after mixing with the grout accordingly, the mixture is proceeded to measure the viscosity in an unhardened state. In addition, the flow and flow time of the grout are evaluated according to the viscosity. As a result of the experiment, it was confirmed that the viscosity and flow time decreased and the flow increased as the volume composition ratio of the dolomite aggregate to the cement-based material increased.

  • PDF

Fluidity of Super Flow Concrete Using Recycled Coarse Aggregate (재생굵은골재를 사용한 초유동 콘크리트의 유동성)

  • Sung, Chan-Yong;Park, Il-Soon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.2
    • /
    • pp.55-61
    • /
    • 2005
  • This study was performed to evaluate fluidity of super flow concrete using recycled coarse aggregate. The unit weight was $2,246{\sim}2,344\;kg/m^3$, the unit weights of these concrete were decreased with increasing the content of fly ash and recycled coarse aggregate. The slump flow was $58{\sim}63\;cm$, the Box type passing was $3.4{\sim}6.8\;cm$, respectively. The L type compacting was excellent in the fly ash content $10\%\;and\;20\%$, but, it was showed in good in the fly ash content $30\%$. The super flow concretes using recycled coarse aggregate were improved by substitution in the range of less than the fly ash content $20\%$ and recycled coarse aggregate content $75\%$. This recycled coarse aggregate can be used for super flow concrete.

Strengths and Non-destruction Properties of Super Flow Concrete Using Recycled Coarse Aggregate (재생굵은골재를 사용한 초유동 콘크리트의 강도 및 비파괴 특성)

  • Sung, Chan-Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.1
    • /
    • pp.25-32
    • /
    • 2005
  • This study was performed to evaluate strengths and non-destruction properties of super flow concrete using recycled coarse aggregate. At the curing age of 28 days, the compressive strength was 22.7-37.5 MPa, the splitting tensile strength was $2.65\~3.73$ MPa, the flexural strength was $5.78\~6.86$ MPa, the ultrasonic pulse velocity was $3,103\~3,480$ mis, the dynamic modulus of elasticity was $3.401{\times}104\~4.521{\times}104$MPa, respectively. The strengths, ultrasonic pulse velocity and dynamic modulus of elasticity of super flow concrete were decreased with increasing the content of recycled coarse aggregate. The super flow concretes using recycled coarse aggregate were improved by substitution in the range of less than the fly ash content 30010 and recycled coarse aggregate content $75\%$.

Properties of High Strength Lightweight Self-Compacting Concrete (고강도 경량 자기충전콘크리트의 성능평가)

  • 최연왕;문대중;안성일;최욱;조선규
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.413-416
    • /
    • 2003
  • Experimental tests on the high strength self-compacting concrete with light-weight fine aggregate and light-weight coarse aggregate(LHSSC) were performed with slump-flow, reaching time to the slump-flow of 500mm, V-funnel dropping time and U-box difference level and compressive strength. LHSCC with light-weight fine aggregate of 75% and light-weight coarse aggregate of 100% was only satisfied with the property conditions of second self-compacting concrete(SCC), like as flowability, resistance to segregation and filling ability. The 28-day compressive strength of LHSCC indicated above 300kgf/$\textrm{cm}^2$ in all concrete mixtures, and it was increased to increase the replacement ratio of light-weight fine aggregate or to decrease the replacement ratio of light-weight coarse aggregate. Therefore, for satisfying the properties of fresh SCC and hardened concrete with above 350kgf/$\textrm{cm}^2$, it would expected that the replacement ratio of light-weight fine aggregate and light-weight coarse aggregate will be determined with 50~75% and 25~50%, respectively.

  • PDF

Engineering Characteristics of Resource-Cycling Mortar according to the Variation of Illite Replacement Ratio and Fine Aggregate Type (굵은골재 및 잔골재 조합변화가 초고강도 콘크리트의 기초적 특성에 미치는 영향)

  • Lee, Sun-Jae;Song, Yuan-Lou;Yun, Jeong-Wan;Han, Dong-Yeop;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.61-62
    • /
    • 2015
  • This study has analyzed the engineering characteristics of resource-cycling mortar according to the variation of fine aggregate type using illite with high development potentials by setting the goal as developing eco-friendly construction materials. As a result, while flow has increased if recycled fine aggregate and waste refractory are used separately or mixing them adequately in case of flow and compressive strength, the flow had somewhat declined followed by illite replacement. However, the possibility of such usage is determined to be adequate if used by mixing illite, recycled fine aggregate and waste refractory properly due to the dry shrinkage effect.

  • PDF

Effect of the Combination of Coarse Aggregate and Fine Aggregate on the Flowability of Ultra High Strength Concrete (굵은 골재 및 잔골재 변화가 초고강도 콘크리트의 유동특성에 미치는 영향)

  • Lee, Hong-Kyu;Lee, Sun-Jae;Kim, Sang-Sup;Park, Young-Jun;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.71-72
    • /
    • 2015
  • As this study is the one related to the ultra high strength concrete essentially used for high rise buildings, it has analyzed on the flowability of ultra high strength concrete according to the variation of coarse aggregate and fine aggregate. The coarse aggregate was planned as two types including Granite Aggregate (GA) and crushed coarse Limestone Aggregate (LA) while fine aggregate was planned as four types including Sea Sand (SS), Limestone Crushed Fine Aggregates (LFA), Electric Arc Furnace Oxidizing Slag Aggregates (EFA) and Crushed Sand (CS) to perform experiment with a total of eight variables. As a result of analyzing slump flow, 500mm concentration time, U-Box and L-Flow, etc. among the characteristics of fresh concrete, a mix using LA+LFA is determined to show high flowability in case of applying ultra high strength concrete.

  • PDF

Engineering Characteristics of Resource-Cycling Mortar according to the Variation of Illite Replacement Ratio and Fine Aggregate Type (일라이트 치환률 및 잔골재 종류 변화에 따른 자원순환형 모르타르의 공학적 특성)

  • Kim, Min-Yoyng;Song, Yuan-Lou;Kim, Sang-Sup;Yoon, Won-Geun;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.46-47
    • /
    • 2015
  • This study has analyzed the engineering characteristics of resource-cycling mortar according to the variation of fine aggregate type using illite with high development potentials by setting the goal as developing eco-friendly construction materials. As a result, while flow has increased if recycled fine aggregate and waste refractory are used separately or mixing them adequately in case of flow and compressive strength, the flow had somewhat declined followed by illite replacement. However, the possibility of such usage is determined to be adequate if used by mixing illite, recycled fine aggregate and waste refractory properly due to the dry shrinkage effect.

  • PDF

An Aggregate Three Color Marker without Per Flow Management for End-to-End QoS Improvement of Assured Service in DiffServ (DiffServ 방식에서 플로별 관리 없이 Assured Service의 End-to-End QoS를 향상하기위한 Aggregate Three Color Marker)

  • Hur, Kyeong;Park, Ji-Hoon;Roh, Young-Sup;Eom, Doo-Seop;Tchah, Kyun-Hyon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.6B
    • /
    • pp.588-603
    • /
    • 2003
  • In this paper, we propose an Aggregate Three Color Marker without per flow management which is required for an Edge router to improve End-to-End QoS of Assured Service in DiffServ. Proposed Aggregate Three Color Marker is used with the Adaptive RIO-DC scheme to achieve the minimum rate guarantee without per flow management. Assuming that the admission control for Assured Service has been performed, proposed Aggregate Three Color Marker measures incoming In-profile traffic rate at the output link of an edge router using a token-bucket with a token rate equal to the sum of contracted rates of admitted flows passing the edge router. If there are token losses from the token bucket, out-of-profile packets are promoted to Yellow packets within the aggregate traffic profile. And yellow packets are demoted to out-of-profile packets at the input link to an Edge router fer the purpose of fairness maintenance. In-profile packets and Yellow packets are processed identically at the RIO-DC buffer management scheme in our proposed method. Simulation results show that through using proposed Aggregate Three Color Marker with the Adaptive RIO-DC scheme, the minimum rate guarantee for Assured Service can be achieved without per flow management at multiple DiffServ domains.

The Effect of Fine Aggregate Fineness modulus on Properties High Performance Concrete (잔골재 조립율이 고성능콘크리트의 특성에 미치는 영향)

  • Lee Seung-Han;Jung Yong-Wook;Park Tae-Hyun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.388-391
    • /
    • 2004
  • This research investigates how the fineness modulus of fine aggregates and the grain shape of coarse aggregates affects flow characteristics, packing characteristics and compressive strength characteristic. The experimental results, show that increase of the fine aggregate's fineness modulus improved concrete flow, but filling ability was high at over KS regulation extent due to segregation phenomena. It is considered that the improvement of 0.1 spherical rate was effective to concrete fluidity elevation by reducing about $6\%$ of fine aggregate ratio displays which the smallest gap rate of aggregate. Compressive strength was increased to about 0.6MPa everytime F.M. 0.1 of fine aggregate fineness is increased. However, it was decreased to about 9MPa at F.M. 3.5 compared to F.M. 3.0.

  • PDF

An Experimental Study of Silica Particle Growth in a Coflow Diffusion Flame Utilizing Light Scattering and Local Sampling Technique (I) - Effects of Flame Temperature - (광산란과 입자포집을 이용한 동축류 확산화염 내의 실리카 입자의 성장 측정(I) - 화염온도의 영향 -)

  • Cho, Jaegeol;Lee, Jeonghoon;Kim, Hyun Woo;Choi, Mansoo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.9
    • /
    • pp.1139-1150
    • /
    • 1999
  • The evolution of silica aggregate particles in coflow diffusion flames has been studied experimentally using light scattering and thermophoretic sampling techniques. The measurements of scattering cross section from $90^{\circ}$ light scattering have been utilized to calculate the aggregate number density and volume fraction using with combination of measuring the particle size and morphology through the localized sampling and a TEM image analysis. Aggregate or particle number densities and volume fractions were calculated using Rayleigh-Debye-Gans and Mie theory for fractal aggregates and spherical particles, respectively. Of particular interests are the effects of flame temperature on the evolution of silica aggregate particles. As the flow rate of $H_2$ increases, the primary particle diameters of silica aggregates have been first decreased, but, further increase of $H_2$ flow rate causes the diameter of primary particles to increase and for sufficiently larger flow rates, the fractal aggregates finally become spherical particles. The variation of primary particle size along the upward jet centerline and the effect of burner configuration have also been studied.