• 제목/요약/키워드: floor stiffness

검색결과 229건 처리시간 0.021초

Softening and hardening tuned mass dampers

  • Khalili, Mohammad Khalil;Badamchi, Karim
    • Earthquakes and Structures
    • /
    • 제14권5호
    • /
    • pp.459-465
    • /
    • 2018
  • Reducing response of buildings during earthquakes by mass dampers, has been examined in many articles and books. Nowadays, many researchers are trying to realistically examine this type of dampers by new methods of performance. In this paper, for the better study of tuned mass damper (TMD), two schematic models are presented for a passive TMD with softening stiffness (softening TMD) and a passive TMD with hardening stiffness (hardening TMD). Then by modeling and analysis of the damper on a single degree of freedom (SDOF) structure and an 11-story steel building, the dampers performance was evaluated. State space was used for damper and structure modeling and to solve nonlinear equations, the Newton-Raphson method was used. The results show that when the structure is subjected to the Chi-Chi earthquake, response of the sixth floor in the system without TMD reduces 54.0% in comparison to the structure with softening TMD. This percentage of reduction for hardening TMD is 55.0%. Also for the Tabas earthquake, reduction in the RMS acceleration of the sixth floor in the system with hardening TMD is 96.2% more than the structure without TMD. This percentage of reduction for hardening TMD is 96.3%.

강성저감을 고려한 플랫슬래브 구조물의 지진해석 (Seismic Analysis of Flat Slab Structures considering Stiffness Degradation)

  • 김현수;이승재;이동근
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2003년도 추계 학술발표회논문집
    • /
    • pp.191-198
    • /
    • 2003
  • Flat slab system has been adopted in many buildings constructed recently because of the advantage of reduced floor heights to meet the economical and architectural demands. Structural engineers commonly use the equivalent frame method(EFM) with equivalent beams proposed by Jacob S. Grossman in practical engineering for the analysis of flat slab structures. However, in many cases, when it is difficult to use the EFM, it is necessary to use a refined finite element model for an accurate analysis. But it would take significant amount of computational time and memory if the entire building structure were subdivided into a finer mesh. An efficient analytical method is proposed in this study to obtain accurate results in significantly reduced computational time. The proposed method employs super elements developed using the matrix condensation technique and fictitious beams are used in the development of super elements to enforce the compatibility at the interfaces of super elements. The stiffness degradation of flat slab system considered in the EFM was taken into account by reducing the elastic modulus of floor slabs in this study. Static and dynamic analyses of example structures were peformed and the efficiency and accuracy of the proposed method were verified by comparing the results with those of the refined finite element model and the EFM.

  • PDF

Development and Structural Assessment of Joints of Permanent Uni-Wall System and Floor Systems in Substructure

  • Chun, Sung-Chul;Kim, Seung-Hun;Noh, Sam-Young;Kim, Kap-Soo;Han, Byum-Seok
    • 한국건축시공학회지
    • /
    • 제12권2호
    • /
    • pp.230-242
    • /
    • 2012
  • Recently the Permanent Uni-wall System (PUS) has been developed which improved the disadvantage of the Cast-In-Place Concrete Pile (CIP) and could be used as permanent retaining wall. In this study, joints between PUS and floor systems were developed. From analyses of the characteristics of design and construction of PUS, shear friction reinforcements with couplers were adopted for shear design of the joints. Twelve types of joints were developed which were classified according to the types of floor structures, wale, and piles of PUS. Two typical joints were tested and the joints showed satisfactory behaviors on the points of shear strength, stiffness, and serviceability. Especially the shear strengths were much higher than the design strengths due to the shear keys which were by-products in splicing shear reinforcements. However, the shear strength of the joint is recommended to be designed by only shear friction reinforcement because shear key is not reliable and too brittle.

Vibration behaviour of cold-formed steel and particleboard composite flooring systems

  • AL Hunaity, Suleiman A.;Far, Harry;Saleh, Ali
    • Steel and Composite Structures
    • /
    • 제43권3호
    • /
    • pp.403-417
    • /
    • 2022
  • Recently, there has been an increasing demand for buildings that allow rapid assembly of construction elements, have ample open space areas and are flexible in their final intended use. Accordingly, researchers have developed new competitive structures in terms of cost and efficiency, such as cold-formed steel and timber composite floors, to satisfy these requirements. Cold-formed steel and timber composite floors are light floors with relatively high stiffness, which allow for longer spans. As a result, they inherently have lower fundamental natural frequency and lower damping. Therefore, they are likely to undergo unwanted vibrations under the action of human activities such as walking. It is also quite expensive and complex to implement vibration control measures on problematic floors. In this study, a finite element model of a composite floor reported in the literature was developed and validated against four-point bending test results. The validated FE model was then utilised to examine the vibration behaviour of the investigated composite floor. Predictions obtained from the numerical model were compared against predictions from analytical formulas reported in the literature. Finally, the influence of various parameters on the vibration behaviour of the composite floor was studied and discussed.

Experimental and numerical study on the PSSDB system as two-way floor units

  • Al-Shaikhli, Marwan S.;Badaruzzaman, Wan Hamidon Wan;Al Zand, Ahmed W.
    • Steel and Composite Structures
    • /
    • 제42권1호
    • /
    • pp.33-48
    • /
    • 2022
  • This paper researches a lightweight composite structure referred to as the Profiled Steel Sheeting Dry Board (PSSDB). It is fundamentally produced by connecting a Profiled Steel Sheeting to Dry Board using mechanical screws. It is mainly employed as floor panels. However, almost all studies have focused on researching the one-way structural performance. Therefore, this study focuses on the bending behaviour of the two-way PSSDB floor system using both of Finite Element (FE) and Experimental analysis. Four panels were used in the experimental tests, and a mild steel plate has been applied at the bottom for two panels. For the FE process, models were created using ABAQUS software. 4 parametric studies have been utilized to understand the system's influential elements. From the experimental tests, it was found that using Steel Plate shall optimize the two-way action of the system and depending on the type of dry board the improvement in stiffness may reach up to 38%. It was shown from the FE analysis that the dry board, profiled steel sheeting and steel plat can affect the system by up to 10 %, 17% and 3% respectively, while applying a uniform load demonstrate a better two-way action.

An experimental study of the behaviour of double sided bolted billet connections in precast concrete frames

  • Gorgun, Halil
    • Steel and Composite Structures
    • /
    • 제29권5호
    • /
    • pp.603-622
    • /
    • 2018
  • Precast concrete structures are erected from individual prefabricated components, which are assembled on-site using different types of connections. In the present design of these structures, beam-to-column connections are assumed pin jointed. Bolted billet beam to-column connections have been used in the precast concrete industry for many years. They have many advantages over other jointing methods in component production, quality control, transportation and assembly. However, there is currently limited information concerning their detailed structural behaviour under vertical loadings. The experimental work has involved the determination of moment-relative rotation relationships for semi-rigid precast concrete connections in full-scale connection tests. The study reported in this paper was undertaken to clarify the behaviour of such connections under symmetrical vertical loadings. A series of full-scale tests was performed on sample column for which the column geometry and bolt arrangements conformed to successful commercial practice. Proprietary hollow core floor slabs were tied to the beams by 2T25 tensile reinforcing bars, which also provide the in-plane continuity across the connections. The contribution of the floor strength and stiffness to the flexural capacity of the joint is currently neglected in the design process for precast concrete frames. The flexural strength of the connections in the double-sided tests was at least 0.93 times the predicted moment of resistance of the composite beam and slab. The secant stiffness of the connections ranged from 0.94 to 1.94 times the flexural stiffness of the attached beam. In general, the double-sided connections were found to be more suited to a semi-rigid design approach than the single sided ones. The behaviour of double sided bolted billet connection test results are presented in this paper. The behaviour of single sided bolted billet connection test results is the subject of another paper.

Design and analysis of isolation effectiveness for three-dimensional base-seismic isolation of nuclear island building

  • Zhu, Xiuyun;Lin, Gao;Pan, Rong;Li, Jianbo
    • Nuclear Engineering and Technology
    • /
    • 제54권1호
    • /
    • pp.374-385
    • /
    • 2022
  • In order to investigate the application of 3D base-seismic isolation system in nuclear power plants (NPPs), comprehensive analysis of constitution and design theory for 3-dimensional combined isolation bearing (3D-CIB) was presented and derived. Four different vertical stiffness of 3D-CIB was designed to isolate the nuclear island (NI) building. This paper aimed at investigating the isolation effectiveness of 3D-CIB through modal analysis and dynamic time-history analysis. Numerical results in terms of dynamic response of 3D-CIB, relative displacement response, acceleration and floor response spectra (FRS) of the superstructure were compared to validate the reliability of 3D-CIB in mitigating seismic response. The results showed that 3D-CIB can significantly attenuate the horizontal acceleration response, and a fair amount of the vertical acceleration response reduction of the upper structure was still observed. 3D-CIB plays a significant role in reducing the horizontal and vertical FRS, the vertical FRS basically do not vary with the floor height. The smaller the vertical stiffness of 3D-CIB is, the better the vertical isolation effectiveness is, whereas, it will increase the displacement and the rocking effect of superstructure. Although the advantage of 3D-CIB is that the vertical stiffness can be flexibly adjusted, it should be designed by properly accounting for the balance between the isolation effectiveness and displacement control including rocking effect. The results of this study can provide the technical basis and guidance for the application of 3D-CIB to engineering structure.

GFRP를 이용한 경량합성바닥의 휨성능에 대한 실험적 평가 (An Experimental Evaluation on Flexural Performance of Light-Weight Void Composite Floor using GFRP)

  • 류재호;박세호;주영규;김상대
    • 한국강구조학회 논문집
    • /
    • 제23권1호
    • /
    • pp.125-135
    • /
    • 2011
  • 최근 타워형 아파트구조에 많이 사용되고 있는 무량판 구조시스템을 대신해 층고절감 및 장스팬 구현 그리고 내화성능향상을 목적으로 GFRP를 이용한 경량합성바닥을 개발하였다. GFRP를 이용한 경량합성바닥은 웨브에 개구부를 가지는 비대칭 강재보 하부에 GFRP를 부착하고 슬래브에 경량체를 삽입한 중공합성바닥이다. 이에 개발된 합성바닥의 휨성능을 평가하기 위해 GFRP, 중공률, 웨브의 개구부 등을 변수로 실대 실험을 수행하였다. 그 결과 GFRP를 이용한 합성보 실험체는 기준 실험체에 비해 휨내력 및 강성 측면에서 10% 높은 성능을 나타냈으며, 구조물이 항복할 때까지 완전합성거동하였다. 항복 이후 웨브개구부 주변의 응력집중현상에 의해 연성이 감소하는 현상이 나타났으며, 최대내력점까지 미끄러짐의 발생은 미소하였다. 내력설계 측면에서는 안전율을 고려해 해석값의 85%를 설계내력으로 평가하는 것이 타당한 것으로 나타났다.

Finite element study on composite slab-beam systems under various fire exposures

  • Cirpici, Burak K.;Orhan, Suleyman N.;Kotan, Turkay
    • Steel and Composite Structures
    • /
    • 제37권5호
    • /
    • pp.589-603
    • /
    • 2020
  • This paper presents an investigation of the thermal performance of composite floor slabs with profiled steel decking exposed to fire effects from floor. A detailed finite-element model has been developed by representing the concrete slab with steel decking under of it and steel beam both steel parts protected by intumescent coating. Although this type of floor systems offers a better fire resistance, passive fire protection materials should be applied when a higher fire resistance is desired. Moreover, fire exposed side is so crucial for composite slab systems as the total fire behaviour of the floor system changes dramatically. When the fire attack from steel parts, the temperature rises rapidly resulting in a sudden decrease on the strength of the beam and decking. Herein this paper, the fire attack side is assumed from the face of the concrete floor (top of the concrete assembly). Therefore, the heat is transferred through concrete to the steel decking and reaching finally to the steel beam both protected by intumescent coating. In this work, the numerical model has been established to predict the heat transfer performance including material properties such as thermal conductivity, specific heat and dry film thickness of intumescent coating. The developed numerical model has been divided into different layers to understand the sensitivity of steel temperature to the number of layers of intumescent coating. Results show that the protected composite floors offer a higher fire resistance as the temperature of the steel section remains below 60℃ even after 60-minute Standard (ISO) fire and Fast fire exposure. Obtaining lower temperatures in steel due to the great fire performance of the concrete itself results in lesser reductions of strength and stiffness hence, lesser deflections.

완충재의 동특성에 따른 중량충격음 증폭에 관한 해석적 연구 (The Effect of Dynamic Property of Absorbing Sheet on the Amplification of Heavy Weight Floor Impact Noise)

  • 황재승;문대호;박홍근;홍성걸;홍건호
    • 한국소음진동공학회논문집
    • /
    • 제20권7호
    • /
    • pp.651-657
    • /
    • 2010
  • Previous experimental results performed by many researchers for a couple of decades in South Korea have shown that an absorbing sheet inserted in a conventional floating slab system for thermal insulation or vibration absorption may amplify the vibration of the slab system at specific frequency ranges depending on the material properties of the sheet. The amplified vibration, consequently, results in the heavy weight floor impact noise exceeding the sound level limit for an apartment house, 50 dB. In this study, the amplification mechanism is examined through numerical analysis and a new slab system is proposed to reduce the amplification and control the noise. The new slab system consists of studs connecting the base slab and upper concrete finishing yielding the dramatically increased stiffness of the slab. The numerical simulation is performed to investigate the effect of the slab system with studs on the vibration and noise control. The results show that the performance of the slab is sensitive to the number and location of studs, and the heavy weight floor impact noise can be reduced up to 6~7 dB compared to the conventional slab system at the optimal stud location.