• Title/Summary/Keyword: flood severity

Search Result 33, Processing Time 0.021 seconds

Development for rainfall classification based on local flood vulnerability using entropy weight in Seoul metropolitan area (엔트로피 가중치를 활용한 지역별 홍수취약도 기반의 서울지역 강우기준 산정기법)

  • Lee, Seonmi;Choi, Youngje;Lee, Eunkyung;Ji, Jungwon;Yi, Jaeeung
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.4
    • /
    • pp.267-278
    • /
    • 2022
  • Recently Flood damage volume has increased as heavy rain has frequently occurred. Especially urban areas are a vulnerability to flooding damage because of densely concentrated population and property. A local government is preparing to mitigate flood damage through the heavy rain warning issued by Korea Meteorological Administration. This warning classification is identical for a national scale. However, Seoul has 25 administrative districts with different regional characteristics such as climate, topography, disaster prevention state, and flood damage severity. This study considered the regional characteristics of 25 administrative districts to analyze the flood vulnerability using entropy weight and Euclidean distance. The rainfall classification was derived based on probability rainfall and flood damage rainfall that occurred in the past. The result shows the step 2 and step 4 of rainfall classification was not significantly different from the heavy rain classification of the Korea Meteorological Administration. The flood vulnerability is high with high climate exposure and low adaptability to climate change, and the rainfall classification is low in the northern region of Seoul. It is possible to preemptively respond to floods in the northern region of Seoul based on relatively low rainfall classification. In the future, we plan to review the applicability of rainfall forecast data using the rainfall classification of results from this study. These results will contribute to research for preemptive flood response measures.

Comparison of SAR Backscatter Coefficient and Water Indices for Flooding Detection

  • Kim, Yunjee;Lee, Moung-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.4
    • /
    • pp.627-635
    • /
    • 2020
  • With the increasing severity of climate change, intense torrential rains are occurring more frequently globally. Flooding due to torrential rain not only causes substantial damage directly, but also via secondary events such as landslides. Therefore, accurate and prompt flood detection is required. Because it is difficult to directly access flooded areas, previous studies have largely used satellite images. Traditionally, water indices such asthe normalized difference water index (NDWI) and modified normalized difference water index (MNDWI) which are based on different optical bands acquired by satellites, are used to detect floods. In addition, as flooding likelihood is greatly influenced by the weather, synthetic aperture radar (SAR) images have also been used, because these are less influenced by weather conditions. In this study, we compared flood areas calculated from SAR images and water indices derived from Landsat-8 images, where the images were acquired at similar times. The flooded area was calculated from Landsat-8 and Sentinel-1 images taken between the end of May and August 2019 at Lijiazhou Island, China, which is located in the Changjiang (Yangtze) River basin and experiences annual floods. As a result, the flooded area calculated using the MNDWI was approximately 21% larger on average than that calculated using the NDWI. In a comparison of flood areas calculated using water indices and SAR intensity images, the flood areas calculated using SAR images tended to be smaller, regardless of the order in which the images were acquired. Because the images were acquired by the two satellites on different dates, we could not directly compare the accuracy of the water-index and SAR data. Nevertheless, this study demonstrates that floods can be detected using both optical and SAR satellite data.

Frequency Analysis of Meteorologic Drought Indices using Boundary Kernel Density Function (경계핵밀도함수를 이용한 기상학적 가뭄지수의 빈도해석)

  • Oh, Tae Suk;Moon, Young-Il;Kim, Seong Sil;Park, Gu Sun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.2B
    • /
    • pp.87-98
    • /
    • 2011
  • Recently, occurrence frequency of extreme events like flood and drought is increasing due to climate change by global warming. Especially, a drought is more severer than other hydrologic disasters because it causes continuous damage through long period. But, ironically, it is difficult to recognize the importance and seriousness of droughts because droughts occur for a long stretch of time unlike flood. So as to analyze occurrence of droughts and prepare a countermeasure, this study analyzed a meteorologic drought among many kinds of drought that it is closely related with precipitation. Palmer Drought Severity Index, Standard Precipitation and Effective Drought Index are computed using precipitation and temperature material observed by Korean Meteorological Administration. With the result of comparative analysis of computed drought indices, Effective Drought Index is selected to execute frequency analysis because it is accordant to past droughts and has advantage to compute daily indices. A Frequency analysis of Effective Drought Index was executed using boundary kernel density function. In the result of analysis, occurrence periods of spring showed about between 10 year and 20 year, it implies that droughts of spring are more frequent than other seasons. And severity and occurrence period of droughts varied in different regions as occurrence periods of the Youngnam region and the southern coast of Korea are relatively shorter than other regions.

A Study on the Evaluation of Drought from Monthly Rainfall Data (월강우자료에 의한 한발측정)

  • Hwang, Eun;Choi, Deog-Soon
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.26 no.3
    • /
    • pp.35-45
    • /
    • 1984
  • Generally speaking, agriculture exist in a climatic environment of uncertainty. Namely, normal rainfall value, as given by the mean values, does not exist. Thought on exists, itl does not affect like extreme Precipitation value on the part of agriculture and of others. Therefore, it is important that we measure the duration and severity index of drought caused by extreme precipitation deficit. In this purpose, this study was dealt with the calculation of drought duration and severity indexs by the method of monthly weighting coefficient. There is no quantitive definition of drought that is universally acceptable. Most of the criteria was used to identify drought have been arbitrary because a drought is a 'non-event' as opposed to a distinct event such as a flood. Therefore, confusion arises when an attempt is made to define the drought phenomenon, the calculation of duration, drought index is based on the following four fundamental question, and this study was dealt with the answers of these four questions as they related to this analytical method, as follows. First, the primary interest in this study is to be the lack of precipitation as it relates to agricultural effective rainfall. Second, the time interval was used to be month in this analysis. Third, Drought event, distinguished analytically from other event, is noted by monthly weighting coefficient method based on monthly rainfall data. Fin-ally, the seven regions used in this study have continually affected by drought on account of their rainfall deficit. The result from this method was very similar to the previous papers studied by many workers. Therefore, I think that this method is very available in Korea to identify the duration of drought, the deficit of precipitation and severity index of drought, But according to the climate of Korea exist the Asia Monsoon zone. The monthly weighting coefficient is modify a little, Because get out of 0.1-0.4 occasionally.

  • PDF

Quantitative Characterization of Historical Drought Events in Korea - Focusing on Drought Frequency Analysis in the Five Major Basins - (우리나라 과거 가뭄사상의 정량적 특성 분석 -5대강 유역의 가뭄빈도분석을 중심으로-)

  • Lee, Joo-Heon;Jang, Ho-Won;Kim, Jong-Suk;Kim, Tae-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.12
    • /
    • pp.1011-1021
    • /
    • 2015
  • This study aims to investigate droughts from the magnitude perspective based on the SPI (Standardized Precipitation Index) and the theory of runs applicable to quantitative analysis of drought in South Korea. In addition, the dry spell analysis was conducted on the drought history in the five major river basins of South Korea to obtain the magnitude, duration and severity of drought, and the quantitative evaluation has been made on historical droughts by estimating the return period using the SDF (Severity-Duration-Frequency) curve gained through drought frequency analysis. The analysis results showed that the return periods for droughts at the regional and major river basin scales were clearly identified. The return periods of severe drought that occurred around the major river basins in South Korea turn out to be mostly 30 to 50 years with the years of the worst drought in terms of severity being 1988 and 1994. In particular, South Korea experienced extremely severe droughts for two consecutive years during the period between 1994 and 1995. Drought in 2014 occurred in the Han River basin and was evaluated as the worst one in terms of severity and magnitude.

Consideration of Physiological Functional Characteristics in Garlic, Allium sativum L. (마늘 (Allium sativum L.)의 생리조절 기능특성과 평가에 관한 연구고찰)

  • 장현세;홍경훈
    • Food Science and Preservation
    • /
    • v.5 no.2
    • /
    • pp.191-197
    • /
    • 1998
  • Garlic is an important condimental vegetable which has many minerals and numerous organic sulfur compounds. Owing to these components, garlic has many medicinal properties and physiological activities on human health. It can lower sect lipid levels and reduce the severity of cholesterol-induced atherosclerosis. And it appeals to protect against mutagenic and carcinogenic effects. Today's our eating habit is concentrated on the physiological function in floods rather than their taste or mutagenic. To improve garlic's value as a flood or a vegetable, further scientific researches about its volatile and nonvolatile sulfur compounds through the biochemical approach are needed. In addition to that, both areas that the development of garlic-processed goods and utilization of garlic as materials for medicine must be actively studied.

  • PDF

Estimation of Design Flood for the Gyeryong Reservoir Watershed based on RCP scenarios (RCP 시나리오에 따른 계룡저수지 유역의 설계홍수량 산정)

  • Ryu, Jeong Hoon;Kang, Moon Seong;Song, Inhong;Park, Jihoon;Song, Jung-Hun;Jun, Sang Min;Kim, Kyeung
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.1
    • /
    • pp.47-57
    • /
    • 2015
  • Along with climate change, the occurrence and severity of natural disasters have been increased globally. In particular, the increase of localized heavy rainfalls have caused severe flood damage. Thus, it is needed to consider climate change into the estimation of design flood, a principal design factor. The main objective of this study was to estimate design floods for an agricultural reservoir watershed based on the RCP (Representative Concentration Pathways) scenarios. Gyeryong Reservoir located in the Geum River watershed was selected as the study area. Precipitation data of the past 30 years (1981~2010; 1995s) were collected from the Daejeon meteorological station. Future precipitation data based on RCP2.6, 4.5, 6.0, 8.5 scenarios were also obtained and corrected their bias using the quantile mapping method. Probability rainfalls of 200-year frequency and PMPs were calculated for three different future spans, i.e. 2011~2040; 2025s, 2041~2070; 2055s, 2071~2100; 2085s. Design floods for different probability rainfalls were calculated using HEC-HMS. As the result, future probability rainfalls increased by 9.5 %, 7.8 % and 22.0 %, also design floods increased by 20.7 %, 5.0 % and 26.9 %, respectively, as compared to the past 1995s and tend to increase over those of 1995s. RCP4.5 scenario, especially, resulted in the greatest increase in design floods, 37.3 %, 36.5 % and 47.1 %, respectively, as compared to the past 1995s. The study findings are expected to be used as a basis to reduce damage caused by climate change and to establish adaptation policies in the future.

Characteristics of the Han River Basin drought using SPEI and RDI (SPEI와 RDI를 이용한 한강유역 가뭄의 특징 분석)

  • Won, Kwang Jai;Chung, Eun-Sung;Lee, Bo-Ram;Sung, Jang Hyun
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.3
    • /
    • pp.187-196
    • /
    • 2016
  • Standardized Precipitation Evapotranspiration Index (SPEI) considering evapotranspiration and precipitation is generally used to quantify the drought severity. Also, Reconnaissance Drought Index (RDI) has been frequently used in the arid regions which is suffering severe droughts, but drought analysis in association with RDI has been the focus of few studies in South Korea. Therefore, this study compared two meterological drought indices based on precipitation and evapotranspiration using Thornthwaite, Hargreaves, and Blaney-Criddle evaportranspiration calculation methods. Meteorological data of sixteen weather stations which are operated by Korea Meteorological Administration (KMA) were used to quantify drought and to compare characteristics of drought for the Han River Basin from 1992 to 2015. As a result, in case of Han River Basin, severe drought sharply increased in recent years. While the correlation coefficients are relatively high between the SPEIs and RDIs, the drought severity and year of severe drought are partially different. Therefore, it is necessary that RDI will be also measured to quantify severity and occurrence year of drought.

The study of Application of Drought Index Using Measured Soil Moisture at KoFlux Tower (KoFlux 타워에서 관측된 토양수분 값을 이용한 가뭄지수 활용에 관한 연구)

  • Kim, Sooyoung;Jo, Hwan Bum;Lee, Seung Oh;Choi, Minha
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.6B
    • /
    • pp.541-549
    • /
    • 2010
  • While the number of rainy days is decreasing, the mean annual precipitation is increasing due to abnormal climate changes caused by the global warming in Korea. Owing to the biased-concentration of rainfall during specific short terms, not only flood but also drought becomes more and more serious. From the literature, it is easily found that previous studies about flood have been intensively conducted. However, previous studies about drought have been performed rarely. This study conducted the comparison between two representative drought indexes calculated from soil moisture and precipitation. Study area was Haenam-gun, Jeollanam-do in Korea. Soil Moisture Index(SMI) was calculated from soil moisture data while the Standardized Precipitation Index(SPI) and the Palmer Drought Severity Index(PDSI) were calculated from meteorological data. All monthly data utilized in this study were observed at the KoFlux Tower. After the comparative analysis, three indexes showed similar tendency. Therefore, it is thought that the drought index using soil moisture measured at the KoFlux Tower is reasonable, which is because the soil moisture is immediately affected by all the meteorological factors.

Dilemma of a small dam with large basin area under climate change condition

  • Jeong-Hyeok Ma;Chulsang Yoo;Tae-Sup Yun;Dongwhi Jung
    • Computers and Concrete
    • /
    • v.33 no.5
    • /
    • pp.559-572
    • /
    • 2024
  • Problems of under-sized dams (small dams with large basin area) could get worse under the global warming condition. This study evaluates the possible change of these problems with the Namgang Dam, an under-sized dam in Korea. For this purpose, first, this study simulates the dam inflow data using a rainfall-runoff model, which are then used as input for the reservoir operation. As a result, daily dam storage, dam release, and dam water supply are derived and compared for both past observed period (1973~2022) and future simulated period (2006~2099) based on the global warming scenarios. Summarizing the results are as follows. First, the inflow rate in the future is expected to be increased significantly. The maximum inflow could be twice of that observed in the past. As a result, it is also expected that the frequency of the water level reaching the high level is increasing. Also, the amount and frequency of dam release are to be increased in the future period. More seriously, this increase is expected to be concentrated on rather extreme cases with large dam release volume. Simply, the condition for flood protection in the downstream of the Namgang Dam is becoming worse and worse. Ironically, the severity of water shortage problem is also expected to become much worse. As the most extreme case, the frequency of no water supply was zero in the observed period, but in the future period, it becomes once every five years. Both the maximum consecutive shortage days and the total shortage volume are expected to become more than twice in the future period. To prevent or mitigate this coming problem of an under-sized dam, the only countermeasure at this moment seems to be its redevelopment. Simply a bigger dam with larger dam reservoir can handle this adverse effect more easily.