• Title/Summary/Keyword: flood routing model

Search Result 136, Processing Time 0.024 seconds

Application of exponential bandwidth harmony search with centralized global search for advanced nonlinear Muskingum model incorporating lateral flow (Advanced nonlinear Muskingum model incorporating lateral flow를 위한 exponential bandwidth harmony search with centralized global search의 적용)

  • Kim, Young Nam;Lee, Eui Hoon
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.8
    • /
    • pp.597-604
    • /
    • 2020
  • Muskingum, a hydrologic channel flood routing, is a method of predicting outflow by using the relationship between inflow, outflow, and storage. As many studies for Muskingum model were suggested, parameters were gradually increased and the calculation process was complicated by many parameters. To solve this problem, an optimization algorithm was applied to the parameter estimation of Muskingum model. This study applied the Advanced Nonlinear Muskingum Model considering continuous flow (ANLMM-L) to Wilson flood data and Sutculer flood data and compared results of the Linear Nonsingum Model incorporating Lateral flow (LMM-L), and Kinematic Wave Model (KWM). The Sum of Squares (SSQ) was used as an index for comparing simulated and observed results. Exponential Bandwidth Harmony Search with Centralized Global Search (EBHS-CGS) was applied to the parameter estimation of ANLMM-L. In Wilson flood data, ANLMM-L showed more accurate results than LMM-L. In the Sutculer flood data, ANLMM-L showed better results than KWM, but SSQ was larger than in the case of Wilson flood data because the flow rate of Sutculer flood data is large. EBHS-CGS could be appplied to be appplicable to various water resources engineering problems as well as Muskingum flood routing in this study.

A Flood Routing for the Downstream of the Kum River Basin due to the Teachong Dam Discharge (대청댐 방류에 따른 금강 하류부의 홍수추적)

  • Park, Bong-Jin;Gang, Gwon-Su;Jeong, Gwan-Su
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.2
    • /
    • pp.131-141
    • /
    • 1997
  • In this study, the Storage Function Method and Loopnet Model (Unsteady flow analysis model) were used to construct the flood prediction system which can predict the effects of the water release in the downstream region of Teachong Dam. The regional frequency analysis (L-moment) was applied to compute frequency-based precipitation, and the flood prediction system was also used for flood routing of the down stream region of Teachong Dam in the Kum River Basin to calculate frequency based flood. The magnitude of flood, water level, discharge, and travel time to the major points of the downstream region of Teachong Dam, which can be used as an imdex of flood control management of Teachong Dam, were calculated.

  • PDF

The Establishment and Application of Hydraulic Channel Routing Model on the Nakdong River (I) Theory and Evaluation of Travel Time (낙동강 유역 수리학적 하도추적 모형 구축 및 적용 (I) 이론 및 도달시간 산정)

  • Lee, Eul Rae;Shin, Chul Kyun;Kim, Sang Ho
    • Journal of Wetlands Research
    • /
    • v.8 no.1
    • /
    • pp.73-82
    • /
    • 2006
  • In this study, the hydraulic channel routing model is applied to analyze water surface elevation pattern on the Nakdong river in flood cases. The procedure to apply FLDWAV model is presented to solve the Saint-Venant Equations by using four points implicit finite differential scheme. And the flood travel time is studied for reasonable dam management. As this results, variable assumption and constraint are followed to evaluate flood travelling time by hydraulic model. A guideline of reasonable dam's decision making considering downstream effect is showed by this constructed model, and scientific hydraulic analysis is possible by it.

  • PDF

A Modeling of the River Bed Variation due to Flood Wave (홍수파(洪水波)에 의한 하상변동(河床變動) 예측모형(豫測模型))

  • Park, Sang Deog;Lee, Won Hwan;Cho, Won Cheol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.9 no.2
    • /
    • pp.73-82
    • /
    • 1989
  • When the flood occurs in the alluvial rivers, the rivers adjust to the flood by means of the mechanism of the river bed variations and its morphological changes to pass that safely, the numerical model was developed to simulate the process of the alluvial river bed variation due to flood wave and carried out by the flood routing for flood wave and the sediment routing for river bed variation. The flood wave, river bed variation, and bed material size distribution may be analysed and predicted by this model. The ability of this model to predict the process of river bed response was proved by the application to the reach from Paldang dam to Indogyo site. In view of the flood analysis considering the sediment process, the effects of river bed variation for the flood routing may be negligible because the river bed variation is smaller than the unsteady flow variation during the same period. By the application of this model, it is shown that, in occurring of sequential flood events, the variation of the river bed and bed material size distribution due to flood wave is more dependent on the first flood event than the latter flood events, and that the river bed variation in this reach of the downstream Han river is dependent on the degradation and the coarsening of bed materials.

  • PDF

Influence of the Peace-Dam Construction on the Flood Discharge and the Flood Stage of the Hwachun-Dam (화천댐의 홍수량 및 수위에 미치는 평화댐의 영향 분석)

  • 전병호;신현석;이재철;윤용남
    • Water for future
    • /
    • v.26 no.1
    • /
    • pp.93-101
    • /
    • 1993
  • Because of the Keumkangsan-Dam and the Peace-Dam constructed in recent years, it is expected that the peak flood discharge and the peak flood stage at the Hwachun-Dam site have been changed. In this study, two methods were used to simulate and compare the effects of the upstream dam construction on the change of the discharge and the stage. One is the storage function method widely used for the hydrological routing in this country. The other is the DWOPER (Dynamic Wave Operational Model) package developed by the U.S. NWS for the hydraulic routing. Flood routing simulations have been performed on four different scenarios:1) Before the construction of the Keumkangsan-Dam and the peace-Dam, 2) The exclusion of the Keumkangsan-Dam watershed (before the construction of the Peace-Dam), 3) The exclusion of the Keumkangsan-Dam watershed (after the construction of the Peace-Dam), 4) The exclusion of the Peace-Dam watershed. The results of the four test cases from the two methods show that the peak flood discharge and the peak flood stage at the Hwachun-Dam site are reduced due to the construction of the Peace-Dam. From these findings, it is suggested that the operational criteria for the optimal dam-operation of the hwachun-Dam need to be modified.

  • PDF

Effect of Flood Stage by Hydraulic Factors in Han River (수리학적 인자에 의한 한강에서의 홍수위 영향 분석)

  • Lee, Eul-Rae;Kim, Won;Kim, Sang-Ho
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.2
    • /
    • pp.121-131
    • /
    • 2005
  • In this study, a flood routing model is used for analyzing change of flood stage induced by various factors. The results by using the past cross section measurement data showed the minimum error in case of accurate measurement of cross section as well as reasonable boundary condition of model. In analyzing the rise of flood stage of main stream considering Inflow magnitude of tributary, it showed that the larger the flow magnitude is, the smaller the variance of stage is. The results of analysis in the tidal effect at Wolgot are that the tidal effect influence the stage profile into upstream in case of normal discharge of main stream and tributary but doesn't influence it even with maximum flood tide in case of project flood. Finally, when the various hydraulic factors are considered in numerical analysis, more systematic and realistic flood forecast system is able to be performed.

Flood Runoff Computation for Mountainous Small Basins using HEC-HMS Model (HEC-HMS 모델을 이용한 산지 소하천유역의 홍수유출량 산정)

  • Chang, In-Soo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.7 no.3
    • /
    • pp.281-288
    • /
    • 2004
  • The objective of this study is to propose a methodology of the flood runoff analysis in steep mountainous basins and the analysis basin is the Jasa valley basin in Chungju city Analyzing the spatial pattern of the rainfall in 1994. 6 30~7.1, the seasonal rainy front was tied up in the whole central district, and the rainfall center was moving from the northern Chungbuk province to the northern Kyongbuk province and caused heavy storm. Analyzing the temporal pattern with the Huff method, the 52.5% of the rainfall was concentrated on the 3rd quartile. Rainfall frequency analysis is accomplished by five distribution types; 2-parameter Lognomal, 3-parameter Lognomal, Pearson Type III, Log-Pearson Type III and Extremal Type I distribution Rainfall-runoff analysis in Jasa valley basin was made using HEC-HMS model. Jasa valley basin was divided into 3 sub-basins and the analysis point was 3 points{A, B and C point) With the rainfall data measured by the 10 minutes, the flood runoff also was calculated by as many minutes. SCS CN model, Clark UH model and Muskingum routing model in HEC-HMS model were used to simulate the runoff volume using selected rainfall event.

  • PDF

Real-Time Flood Forecasting System For the Keum River Estuary Dam(II) -System Application- (금강하구둑 홍수예경보시스템 개발(II) -시스템의 적용-)

  • 정하우;이남호;김현영;김성준
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.36 no.3
    • /
    • pp.60-66
    • /
    • 1994
  • This paper is to validate the proposed models for the real-time forecasting for the Keum river estuary dam such as tidal-level forecasting model, one-dimensional unsteady flood routing model, and Kalman filter models. The tidal-level forecasting model was based on semi-range and phase lag of four tidal constituents. The dynamic wave routing model was based on an implicit finite difference solution of the complete one-dimensional St. Venant equations of unsteady flow. The Kalman filter model was composed of a processing equation and adaptive filtering algorithm. The processng equations are second ordpr autoregressive model and autoregressive moving average model. Simulated results of the models were compared with field data and were reviewed.

  • PDF

Estimation of Parameters of the Linear, Discrete, Input-Output Model (선형 이산화 입력-출력 모형의 매개변수 결정에 관한 연구)

  • 강주복;강인식
    • Journal of Environmental Science International
    • /
    • v.2 no.3
    • /
    • pp.193-199
    • /
    • 1993
  • This study has two objectives. One is developing the runoff model for Hoe-Dong Reservoir basin located at the upstream of Su-Young River in Pusan. To develop the runoff model, basic hydrological parameters - curve number to find effective rainfall, and storage coefficient, etc. - should be estimated. In this study, the effective rainfall was calculated by the SCS method, and the storage coefficient used in the Clark watershed routing was cited from the report of P.E.B. The other is the derivation of transfer function for Hoe-Dong Reservoir basin. The linear, discrete, input-output model which contained six parameters was selected, and the parameters were estimated by the least square method and the correlation function method, respectively. Throughout this study, rainfall and flood discharge data were based on the field observation in 1981.8.22 - 8.23 (typhoon Gladys). It was observed that the Clark watershed routing regenerated the flood hydrograph of typhoon Gladys very well, and this fact showed that the estimated hydrological parameters were relatively correct. Also, the calculated hydrograph by the linear, discrete, input-output model showed good agreement with the regenerated hydrograph at Hoe-Dong Dam site, so this model can be applicable to other small urban areas. Key Words : runoff, effective rainfall, SCS method, clark watershed iou상ng, hydrological parameters, parameter estimation, least square method, correlation function method, input-output model, typhoon gladys.

  • PDF

Hydraulic Flood Routing for Natural Channels (자연수로의 수리학적 홍수추적)

  • 박기호;조현경
    • Water for future
    • /
    • v.28 no.3
    • /
    • pp.113-122
    • /
    • 1995
  • A nonlinear wave routing model is suggested for the routing of floods in the natural open channel networks. For the optimization of parameter of the proposed routing model, parameter adjustment is executed through the proposed objective function. The model treats backwater effect form upstream and downstream ends. Solution of formulated model is made possible on computer by adopting a nonlinear finite-difference scheme for the numerical analysis based on a combination of Lax-Wendroff scheme and Burstein-Lapidus modification. Comparison of the results of the proposed model to those of actual hydrograph and dynamic wave routing model denotes that the proposed model is as accurate as actual runoff hydrograph and faster the computer time than the dynamic wave routing model.

  • PDF