• Title/Summary/Keyword: flood inundation area

Search Result 254, Processing Time 0.02 seconds

The Construction of GIS-based Flood Risk Area Layer Considering River Bight (하천 만곡부를 고려한 GIS 기반 침수지역 레이어 구축)

  • Lee, Geun-Sang;Yu, Byeong-Hyeok;Park, Jin-Hyeog;Lee, Eul-Rae
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.12 no.1
    • /
    • pp.1-11
    • /
    • 2009
  • Rapid visualization of flood area of downstream according to the dam effluent in flood season is very important in dam management works. Overlay zone of river bight should be removed to represent flood area efficiently based on flood stage which was modeled in river channels. This study applied drainage enforcement algorithm to visualize flood area considering river bight by coupling Coordinate Operation System for Flood control In Multi-reservoir (COSFIM) and Flood Wave routing model (FLDWAV). The drainage enforcement algorithm is a kind of interpolation which gives to advantage into hydrological process studies by removing spurious sinks of terrain in automatic drainage algorithm. This study presented mapping technique of flood area layer considering river bight in Namgang-Dam downstream, and developed system based on Arcobject component to execute this process automatically. Automatic extraction system of flood area layer could save time-consuming efficiently in flood inundation visualization work which was propelled based on large volume data. Also, flood area layer by coupling with IKONOS satellite image presented real information in flood disaster works.

  • PDF

A Study on Flood Inundation Analysis of Dam Downstream Area by Using Mike Flood (Mike Flood를 이용한 댐 하류하천 홍수범람 분석)

  • Choi, Byung-Kyu;Kang, Tae-Ho;Choi, Kyung-Lok;Moon, Young-Il
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.109-114
    • /
    • 2006
  • 최근 들어 지구온난화 및 이상기후 등 기상이변으로 인해 빈번히 발생하고 있는 이상홍수에 대한 댐의 적극적인 대응을 위하여 댐 지역의 가능최대강수량(PMP) 및 가능최대홍수량(PMF)을 산정 수문학적 안정성을 검토하고, 이에 따른 댐의 치수능력 확보를 위해 구조적, 비구조적 계획을 수행하고 있으며, 이상호우로 인한 댐 붕괴 혹은 댐 하류하천 홍수범람 영향을 검토하여 인명과 재산 피해를 최소화하기 위한 침수예상지역의 비상대피계획(EAP)을 수립하고 있다. 본 연구에서는 이상홍수에 있어서 댐 치수능력 증대에 따른 댐 방류시 하류하천의 홍수범람 양상을 모의하기 위하여 1차원, 2차원 결합모형인 Mike Flood 모형을 이용하여 댐 하류하천의 홍수범람 분석을 실시하였다. Mike Flood 모형의 적용성을 검증하기 위해 1998년 8월 홍수시 서울시 우이천유역의 홍수범람 실측자료를 바탕으로 Mike Flood 모형을 모의를 수행한 결과 실제 조사된 홍수범람지역과 대체로 일치함을 알 수 있었다. 따라서, 댐 치수능력 증대에 따른 하류하천 영향을 검토하기 위해 Mike Flood 모형을 이용 수어댐에 적용하여 이상홍수시 하류하천 침수예상지역을 예측함으로써 이 지역의 비상대피계획 수립에 있어서 기초 자료로 활용할 수 있을 것이다.

  • PDF

The Method for Transforming the Shape File in ESRI into the Oracle Spatial DB for the Spatial DB Construction of the Drainage System (하수관거 공간DB 구축을 위한 ESRI 공간 파일의 오라클 공간DB 자동 변환 기법)

  • Kim, Ki-Uk;Hwang, Hyun-Suk;Kim, Chang-Soo
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.7
    • /
    • pp.989-996
    • /
    • 2009
  • Recently, use of the GIS (Geographic Information System) for the disaster of the urban inundation is increasing. The digital disaster map is the system which analyzes the occurrence area of inundation in the past and forecasts the flood areas by the hydrology method. The development of the system which simulates the flood forecast area by the SWMM(Storm Water Management System) and hydrology method and displays the danger areas is required for the construction of the inundation forecast system. And the spatial database which contains information of the urban facilities such as the street and building and the sewer system such as the manhole and drainage and the result of the hydrology analysis is constructed. In this paper, we propose the method for transforming the Shape File in ESRI into the Oracle spatial database to construct the spatial data for the drainage systems and urban facilities using the Shape File format in the ESRI. We suggest the algorithm for the transformation of the data format, and develop the prototype system to display the inundation area using the spatial database.

  • PDF

Vulnerability Analysis in the Nakdong River Basin for the Utilization of Flood Risk Mapping (홍수위험지도 활용을 위한 낙동강 유역에서의 홍수취약도 분석)

  • Kim, Tae-Hyung;Han, Kun-Yeun;Cho, Wan-Hee
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.14 no.3
    • /
    • pp.203-222
    • /
    • 2011
  • The characteristics of flood damages have been increasingly strengthened and take the form of unpredictable and unusual weather phenomena caused by climate change and climate anomalies. To prevent inundation damage caused by breach of hydraulic structure such as dam or levee, and trouble of drainage of inner basin, the prediction necessity of flood inundation area, flood risk analysis, and drawing flood risk maps have been on the rise, and the national flood risk maps have been produced. In this study, the quantitative flood vulnerability analysis was performed, which represents population living within flood-affected areas, types of economic activities, facilities affected by flood, in order to extend flood risk mapping from simple hazard concept into risk based idea. By applying it to Nakdong River basin, the flood vulnerability indices were estimated to draw flood risk maps subdivided into administrative districts. The result of this study can be applied to establish the disaster prevention measures and priority decision of disaster prevention project.

A Comparison of Geomorphological and Hydrological Methods for Delimitation of Flood Plain in the Mankyung River, Korea (지형학적 및 수문학적 방법에 의한 만경강 홍수터 획정 방법 비교)

  • Kim, Ji-Sung;Lee, Chan-Joo;Kim, Joo-Hun;Choi, Cheonkyu;Kim, Kyu-Ho
    • Ecology and Resilient Infrastructure
    • /
    • v.2 no.2
    • /
    • pp.128-136
    • /
    • 2015
  • River areas include channels, floodplains and all the areas affected by physical and ecological processes in river systems. It is noticeably different from present riparian zone which is bounded by dykes. In this study, two methods for delineation of a floodplain are proposed, which are used for evaluation of the function of a river. One of them is a geomorphology-based technique and the other is hydrology-based inundation analysis. For the Mankyung River, these two methods are applied to delineate the floodplain area. Areas delineated with both methods are mutually compared. The results show that the geomorphology-based method is suitable for the delineation of a valley bottom, including the floodplain in a broader sense, which is unlike an inundated area reflecting contemporary hydrologic conditions. Compared with other flood frequency areas, a 100-year flood inundation area was found reasonable to represent the spatial extent of a floodplain without regard to the longitudinal location along a river. However, it is necessary in certain rivers reach where the division of a channel exists to compare a geomorphological analysis on a valley bottom with an inundation area of different frequencies.

Inundation Analysis of Suyoung.Mangmi Lowland Area Using SWMM and FLUMEN (SWMM과 FLUMEN을 이용한 수영.망미 저지대의 침수 분석)

  • Kang, Tae-Uk;Lee, Sang-Ho;Jung, Tae-Hun;Oh, Jai-Ho
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.5
    • /
    • pp.149-158
    • /
    • 2010
  • Recent rainfall patterns in Korea show that both of the total amount of rainfall and the total number of heavy rain days have been increased. Therefore, the damage resulted from flood disaster has been dramatically increased in Korea. The purpose of the present study is to analyze flooding in an urban area using SWMM linked with FLUMEN. The study area is Suyeong-Mangmi lowland area, Busan, Korea. Suyeong-Mangmi lowland area have been a flooding hazard zone since 1995. The last flooding cases of this area occurred on July 7th and 16th, 2009, and the later flooding case was analyzed in this study. The first step of computation is calculating flow through storm sewers using the urban runoff simulation model of SWMM. The flooding hydrographs are used in the inundation analysis model of FLUMEN. The results of inundation analysis were compared with the real flooding situation of the study area. The real maximum inundation depth was guessed by 1.0 m or more on July 16th. The computation yields the maximum inundation depth of 1.2 m and the result was somewhat overestimated. The errors may be resulted from the runoff simulation and incapability of simulation using FLUMEN for flow into buildings. The models and procedures used in this study can be applied to analysis of flooding resulted from severe rainfall and insufficiency of drainage capacity.

A Study on the Inundation Analysis of the Nam River Lowland Using GIS and FLUMAN (GIS와 FLUMAN을 이용한 남강 저지대 침수분석에 관한 연구)

  • Choi, Hyun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.25 no.2
    • /
    • pp.49-56
    • /
    • 2017
  • In this study, flood analysis was conducted to prepare for damage caused by typhoons and heavy rain due to abnormal climate and climate change. Two - dimensional flooding analysis using the FLUMEN model, which is widely used for national and international flood risk mapping, was conducted for the Nam River Basin, which is the tributary of the Nakdong River. This study divides the topography into $5m{\times}5m$ DEM by ArcView, so that the accuracy of river repair and hydrological characterization and flood area identification can be maximized. As a result of simulation of water flooding, 163.3ha in section 1, 227.7ha in section 2 and 59.9ha in section 3 were simulated.

Analysis of Inundation Causes in Urban Area based on Application of Prevention Performance Objectives (도시유역에서의 방재성능목표 적용과 침수원인 분석)

  • kim, Jong-Sub
    • Journal of Wetlands Research
    • /
    • v.18 no.1
    • /
    • pp.16-23
    • /
    • 2016
  • The purpose of this study is to analyze quantitatively the inundation causes by applying the prevention of performance objectives using the urban storm water runoff model XP-SWMM. The model was built by using DTM and storm sewer-network with the storm sewer and geo-data of the study area as input-data to assess the current performance of prevention. An analysis of the causes of the inundation by the frequency and the rainfall-duration. As a result, lack of pipe capacity due to flooding, as well as inundation heavier that the backwater rainfall occurs due to the rise of water level of outside. For solve the inundation damage, It is necessary to improvement pipe of capacity lack and installation of a flood control channel.

A Study on Application of 2-Dimensional Flow Models to Inundation on Underground Space System (지하공간 침수해석을 위한 2차원 흐름모형의 적용성 검토)

  • Kwak, Sunghyun;Lee, Kyungsu;Rhee, Dong Sop;Lyu, Siwan
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.6
    • /
    • pp.78-84
    • /
    • 2015
  • In order to increase the utilization of limited space in urban area, it can be a good solution to make use of underground space. For the last few decades, underground space systems, such as underground passages, subway stations, and underground shopping arcades, have been constructed in many cities all over the country. Despite of the advantages on the utilization of space in urban area, underground space systems have always been exposed to the risk of inundations resulted from severe rain storms. In this study, it has been examined to apply 2-D flow models (TUFLOW and FLUMEN) to establishing the preventive measures to the risk of flood. For the part with relatively complex configuration, such as a corridor junction, 2-D flow models present the detailed information about the effect of geometry on the inundation events and the temporal and spatial distribution of inundation over the space. From the result, it can be concluded that the 2-D flow model can be the effective implement for establishing the proper measure to the inundation on underground space systems, which generally have relatively long and narrow geometry with complex inner configuration.

A study on the Effective Operation of Pump Stations (빗물펌프장 운영합리화 방안 연구)

  • 한국원자력연구소
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.2
    • /
    • pp.133-144
    • /
    • 1998
  • Recent development booms in urban watersheds have increased impermeable areas and brought about an increase of peak flood. Eventually, some people living in the lower area of an urban watershed, very often and seriously, have suffered form inundation. In this study, for minimization of inundation in urban watersheds, the operational criteria for pump stations are suggested. At first, ILLUDAS has been selected as a runoff model which can explain the past precipitations. Secondly the operational criteria for pump stations could be suggested by working out an operational criteria for pump stations could be suggested by working out an operation program from the relationship between pumping capacity and accumulative hydrographs, and from the Intensity-Duration-Frequency relationship.

  • PDF