• Title/Summary/Keyword: flood forecasting

Search Result 329, Processing Time 0.027 seconds

A Basic Study on the Flood-Flow Forecasting System Model with Integrated Optimal Operation of Multipurpose Dams (댐저수지군의 최적연계운영을 고려한 유출예측시스템모형 구축을 위한 기초적 연구)

  • 안승섭
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.37 no.3_4
    • /
    • pp.48-60
    • /
    • 1995
  • A flood - flow forecasting system model of river basins has been developed in this study. The system model consists of the data management system(the observation and telemetering system, the rainfall forecasting and data-bank system), the flood runoff simulation system, the reservoir operation simulation system, the flood forecasting simulation system, the flood warning system and the user's menu system. The Multivariate Rainfall Forecasting model, Meteorological factor regression model and Zone expected rainfall model for rainfall forecasting and the Streamflow synthesis and reservoir regulation(SSARR) model for flood runoff simulation have been adopted for the development of a new system model for flood - flow forecasting. These models are calibrated to determine the optimal parameters on the basis of observed rainfall, 7 streamfiow and other hydrological data during the past flood periods.

  • PDF

DEVELOPMENT OF A REAL-TIME FLOOD FORECASTING SYSTEM BY HYDRAULIC FLOOD ROUTING

  • Lee, Joo-Heon;Lee, Do-Hun;Jeong, Sang-Man;Lee, Eun-Tae
    • Water Engineering Research
    • /
    • v.2 no.2
    • /
    • pp.113-121
    • /
    • 2001
  • The objective of this study is to develop a prediction mode for a flood forecasting system in the downstream of the Nakdong river basin. Ranging from the gauging station at Jindong to the Nakdong estuary barrage, the hydraulic flood routing model(DWOPER) based on the Saint Venant equation was calibrated by comparing the calculated river stage with the observed river stages using four different flood events recorded. The upstream boundary condition was specified by the measured river stage data at Jindong station and the downstream boundary condition was given according to the tide level data observed at he Nakdong estuary barrage. The lateral inflow from tributaries were estimated by the rainfall-runoff model. In the calibration process, the optimum roughness coefficients for proper functions of channel reach and discharge were determined by minimizing the sum of the differences between the observed and the computed stage. In addition, the forecasting lead time on the basis of each gauging station was determined by a numerical simulation technique. Also, we suggested a model structure for a real-time flood forecasting system and tested it on the basis of past flood events. The testing results of the developed system showed close agreement between the forecasted and observed stages. Therefore, it is expected that the flood forecasting system we developed can improve the accuracy of flood forecasting on the Nakdong river.

  • PDF

Flood-Flow Managenent System Model of River Basin (하천유역의 홍수관리 시스템 모델)

  • Lee, Soon-Tak
    • Water for future
    • /
    • v.26 no.4
    • /
    • pp.117-125
    • /
    • 1993
  • A flood -flow management system model of river basin has been developed in this study. The system model consists of the observation and telemetering system, the rainfall forecasting and data-bank system, the flood runoff simulation system, the dam operation simulation system, the flood forecasting simulation system and the flood warning system. The Multivariate model(MV) and Meterological-factor regression model(FR) for rainfall forecasting and the Streamflow synthesis and reservoir regulation(SSARR) model for flood runoff simulation have been adopted for the development of a new system model for flood-flow management. These models are calibrated to determine the optimal parameters on the basis of observed rainfall, streamflow and other hydrological data during the past flood periods. The flood-flow management system model with SSARR model(FFMM-SR,FFMM-SR(FR) and FFMM-SR(MV)), in which the integrated operation of dams and rainfall forecasting in the basin are considered, is then suggested and applied for flood-flow management and forecasting. The results of the simulations done at the base stations are analysed and were found to be more accurate and effective in the FFMM-SR and FFMM0-SR(MV).

  • PDF

Global Flood Alert System (GFAS)

  • Umeda, Kazuo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.28-35
    • /
    • 2006
  • Global Flood Alert System (GFAS) is an attempt to make the best use of satellite rainfall data in flood forecasting. The project of GFAS is promoted both by Ministry of Land, Infrastructure and Transport-Japan (MLIT) and Japan Aerospace Exploration Agency (JAXA), under which Infrastructure Development Institute-Japan (IDI) has been working on the development of Internet-based information system and just launched trial run of GFAS in April 2006 on International Flood Network (IFNet) website. The function of GFAS is to connect space agencies and hydrological services/river authorities in charge of flood forecasting and warning by providing global rainfall information in maps, text data e-mails and so on which is produced from binary global rainfall data downloaded from National Aeronautics and Space Administration (NASA) website. Although the effectiveness of satellite rainfall data in flood forecasting and warning has yet to be verified, satellite rainfall is expected to play an important role to strengthen existing flood forecasting systems by diversifying hydrological data source.

  • PDF

Real Time Error Correction of Hydrologic Model Using Kalman Filter

  • Wang, Qiong;An, Shanfu;Chen, Guoxin;Jee, Hong-Kee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1592-1596
    • /
    • 2007
  • Accuracy of flood forecasting is an important non-structural measure on the flood control and mitigation. Hence, combination of horologic model with real time error correction became an important issue. It is one of the efficient ways to improve the forecasting precision. In this work, an approach based on Kalman Filter (KF) is proposed to continuously revise state estimates to promote the accuracy of flood forecasting results. The case study refers to the Wi River in Korea, with the flood forecasting results of Xinanjiang model. Compared to the results, the corrected results based on the Kalman filter are more accurate. It proved that this method can take good effect on hydrologic forecasting of Wi River, Korea, although there are also flood peak discharge and flood reach time biases. The average determined coefficient and the peak discharge are quite improved, with the determined coefficient exceeding 0.95 for every year.

  • PDF

Web-Based Forecasting System for Flood Runoff with Neural Network (신경회로망을 이용한 Web기반 홍수유출 예측시스템)

  • Hang, Dong-Guk;Jun, Kye-Won
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.4
    • /
    • pp.437-442
    • /
    • 2005
  • The forecasting of flood runoff in the river is essential for flood control. The purpose of this study is to test a development of system for flood runoff forecasting using neural network model. For the flood events the tested rainfall and runoff data were the input to the input layer and the flood runoff data were used in the output layer To choose the forecasting model which would make up of runoff forecasting system properly, real-time runoff in the river when flood periods were forecasted by using the neural network model and the state-space model. A comparison of the results obtained by the two forecasting models indicated the superiority and reliability of the neural network model over the state-space model. The neural network model was modified to work in the Web and developed to be the basic model of the forecasting system for the flood runoff.

Establishment and Application of Neuro-Fuzzy Real-Time Flood Forecasting Model by Linking Takagi-Sugeno Inference with Neural Network (I) : Selection of Optimal Input Data Combinations (Takagi-Sugeno 추론기법과 신경망을 연계한 뉴로-퍼지 홍수예측 모형의 구축 및 적용 (I) : 최적 입력자료 조합의 선정)

  • Choi, Seung-Yong;Kim, Byung-Hyun;Han, Kun-Yeun
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.7
    • /
    • pp.523-536
    • /
    • 2011
  • The objective of this study is to develop the data driven model for the flood forecasting that are improved the problems of the existing hydrological model for flood forecasting in medium and small streams. Neuro-Fuzzy flood forecasting model which linked the Takagi-Sugeno fuzzy inference theory with neural network, that can forecast flood only by using the rainfall and flood level and discharge data without using lots of physical data that are necessary in existing hydrological rainfall-runoff model is established. The accuracy of flood forecasting using this model is determined by temporal distribution and number of used rainfall and water level as input data. So first of all, the various combinations of input data were constructed by using rainfall and water level to select optimal input data combination for applying Neuro-Fuzzy flood forecasting model. The forecasting results of each combination are compared and optimal input data combination for real-time flood forecasting is determined.

Real-Time Forecasting of Flood Runoff Based on Neural Networks in Nakdong River Basin & Application to Flood Warning System (신경망을 이용한 낙동강 유역 하도유출 예측 및 홍수예경보 이용)

  • Yoon, Kang-Hoon;Seo, Bong-Cheol;Shin, Hyun-Suk
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.2
    • /
    • pp.145-154
    • /
    • 2004
  • The purpose of this study is to develop a real-time forecasting model in order to predict the flood runoff which has the nature of non-linearity and to verify applicability of neural network model for flood warning system. Developed model based on neural network, NRDFM(Neural River Discharge-Stage Forecasting Model) is applied to predict the flood discharge on Waekwann and Jindong stations in Nakdong river basin. As a result of flood forecasting on these two stations, it can be concluded that NRDFM-II is the best predictive model for real-time operation. In addition, the results of forecasting used on NRDFM-I and NRDFM-II model are not bad and these models showed sufficient probability for real-time flood forecasting. Consequently, it is expected that NRDFM in this study can be utilized as suitable model for real-time flood warning system and this model can perform flood control and management efficiently.

Flood Forecasting and Utilization of Radar-Raingauge in Japan

  • Kazumasa, Ito;Shigeki, Sakakima;Takuya, Yagami
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.62-71
    • /
    • 2004
  • There are 109 A class rivers in Japan. One purpose of river management is to reduce the flooding. For this purpose, government provides the information to public, as flood forecasting, rainfall forecasting and estimate the runoff magnitude to avoid the flood and inundation. In this paper, we introduce current situation of flood forecasting and rainfall forecasting in Japan, and we describe how to use the information of flood forecasting and rainfall forecasting in conjunction with current strategy for river management.

  • PDF

Accuracy analysis of flood forecasting of a coupled hydrological and NWP (Numerical Weather Prediction) model

  • Nguyen, Hoang Minh;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.194-194
    • /
    • 2017
  • Flooding is one of the most serious and frequently occurred natural disaster at many regions around the world. Especially, under the climate change impact, it is more and more increasingly trend. To reduce the flood damage, flood forecast and its accuracy analysis are required. This study is conducted to analyze the accuracy of the real-time flood forecasting of a coupled meteo-hydrological model for the Han River basin, South Korea. The LDAPS (Local Data Assimilation and Prediction System) products with the spatial resolution of 1.5km and lead time of 36 hours are extracted and used as inputs for the SURR (Sejong University Rainfall-Runoff) model. Three statistical criteria consisting of CC (Corelation Coefficient), RMSE (Root Mean Square Error) and ME (Model Efficiency) are used to evaluate the performance of this couple. The results are expected that the accuracy of the flood forecasting reduces following the increase of lead time corresponding to the accuracy reduction of LDAPS rainfall. Further study is planed to improve the accuracy of the real-time flood forecasting.

  • PDF