• Title/Summary/Keyword: flood forecast

Search Result 176, Processing Time 0.027 seconds

Numerical Simulation of the Floodwave Analysis Resulting from Dam Failure - Flood on Dry Bed from Instantaneous Dam-Break- (댐의 파괴형태와 하도부 양상에 따른 홍수파의 전달특성 해석에 관한 연구 - 급격한 댐 파괴와 마른하도를 중심으로 -)

  • 한건윤
    • Water for future
    • /
    • v.23 no.4
    • /
    • pp.467-476
    • /
    • 1990
  • Numerical model for the floodwave propagation on dry bed which is resulting from the instantaneous failure of a dam has been developed by moving Hartree scheme. The numerical simulation result of the model has good agreements with the observed data by WES in terms of stage hydrograph and characteristics profiled. The model would contribute effectively to forecast the flood on dry bed resulting from instantaneous dam-break.

  • PDF

Economic analysis of Floodplain Forecast connected with GIS and MD-FDA (GIS와 MD-FDA를 연계한 예상침수지역의 경제성 분석)

  • Lee, Byung-Gul;Ahn, Chang-Whan;Choi, Hyun;Hong, Soon-Heon
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2007.04a
    • /
    • pp.253-256
    • /
    • 2007
  • Among natural disasters that lead to devastating damage, floods from heavy rains have been causing hundreds of victims and a great loss of their properties every year. Basically, there is no other way to deal with the problem considering it is a kind of natural disaster, but more specific studies for a preventive measure of flood has been in progress so far. However, the controversy over the problem is going on due to the objection of some environmental organizations or some economic reasons. The key important thing is select the most suitable area for a preventive measure of flood where a huge amount of national budget is put into, which is also the factor to judge it would be success or failure, therefore, in this study, it is made to be profitable to decide the priority order in a plan for preventing disasters by drawing more accurate data conveniently from the connection with GIS when you get some information of configuration of the ground and using them into the economic analysis for flood prevention industries.

  • PDF

Application of multi-dimensional flood damage analysis in urban area (도시지역 침수피해액 산정을 위한 다차원법 적용)

  • Tak, Yong Hun;Kim, Young Do;Kang, Boosik;Park, Mun Hyun
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.6
    • /
    • pp.397-405
    • /
    • 2017
  • In case of inundation in a city where populations and properties are highly concentrated, unlike rural areas it is necessary to apply the method of calculating the damage amount considering the sewage overflow and the corresponding building damage. In this study, Dorim 1 drainage sector has been analyzed with Multi-Dimensional Flood Damage Assessment (MD-FDA) for flood forecast. It is analyzed with past flood history through the SWMM model and calculated the amount of damage with district base data and the result of flow analysis. The result of the SWMM model to predict a range of flood, it was shown that the wide area after 4 hours (at 16:30) by sewer overflow. The building damage was estimated using MD-FDA. As a result, the maximum flood area has shown as $205,955m^2$ (0~0.5 m: $205,190m^2$, over 0.5 m: $865m^2$) and estimated building damage of Dorim 1 drainage sector is approximately 15.5 billion KRW (Korean won) and other contents is 7 billion KRW (Korean won). Also from 0 to 0.5 m depth estimated damage is approximately 22.4 billion KRW (Korean won) and over 0.5 m is 100 million KRW (Korean won). Based on the results of this study, it would be necessary to estimate the amount of sub-divided flood damage in urban areas according to various damage patterns such as flood depth and flood time.

Validation of Real-Time River Flow Forecast Using AWS Rainfall Data (AWS 강우정보의 실시간 유량예측능력 평가)

  • Lee, Byong-Ju;Choi, Jae-Cheon;Choi, Young-Jean;Bae, Deg-Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.6
    • /
    • pp.607-616
    • /
    • 2012
  • The objective of this study is to evaluate the valid forecast lead time and the accuracy when AWS observed rainfall data are used for real-time river flow forecast. For this, Namhan river basin is selected as study area and SURF model is constructed during flood seasons in 2006~2009. The simulated flow with and without the assimilation of the observed flow data are well fitted. Effectiveness index (EI) is used to evaluate amount of improvement for the assimilation. EI at Chungju, Dalcheon, Hoengsung and Yeoju sites as evaluation points show 32.08%, 51.53%, 39.70% and 18.23% improved, respectively. In the results of the forecasted values using the limited observed rainfall data in each forecast time before peak flow occur, the peak flow under the 20% tolerance range of relative error at Chungju, Dalcheon, Hoengsung and Yeoju sites can be simulated in forecast time-11h, 2h, 3h and 5h and the flow volume in the same condition at those sites can be simulated in forecast time-13h, 2h, 4h and 9h, respectively. From this results, observed rainfall data can be used for real-time peak flow forecast because of basin lag time.

Analysis of Rain Attenuation for Communication of Flood Forecast System (홍수예보용 통신망의 강우감쇠 분석)

  • Hong, Sung-Taek;Shin, Gang-Wook
    • Proceedings of the KIEE Conference
    • /
    • 2007.11c
    • /
    • pp.134-137
    • /
    • 2007
  • 한국수자원공사에서는 홍수예보용으로 위성통신망을 주망으로 사용하고, CDMA망이나 유선, 무선, VHF 망을 보조망으로 이용하고 있다. 현장에 설치되어 있는 우량관측국에 대하여 강우가 집중되는 기간동안 강우량에 따른 강우감쇠를 주망인 위성통신망과 보조망으로 이용하고 있는 CDMA망과 비교하여 각각의 감쇠 정도를 분석하고 이에 따른 대안을 제시하고자 한다.

  • PDF

Threshold Runoff Computation for Flash flood forecast on Small Catchment Scale (돌발홍수예보를 위한 미소유역의 한계유출량 산정)

  • Kim, Woon-Tae;Bae, Deg-Hyo;Cho, Chun-Ho
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.5
    • /
    • pp.553-561
    • /
    • 2002
  • The objectives of this study are to introduce flash flood forecasting system in Korea and to develop a system for computing threshold runoff on very fine catchment scale. The developed GUI system composed of 9 steps starting from input data preparation to Input file creation for flash flood forecasting compute basin subdivision, hydrologic subbasin characteristics, bankfull flows, unit peak flows and threshold runoffs on about 5 $\textrm{km}^2$ scale. When the developed system was applied on Pyungchang IHP basin, the computed 1-hour threshold runoffs ranged 18.72~81.96mm with average value of 46.39mm. Judging from the comparison of the computed threshold runoffs between this study area and three other basins in United States, the computed results in this study were reasonable. It can be concluded that the developed system on ArcView/Avenue are useful for computing threshold runoff on small catchment and can be used as a component of flash flood forecasting system.

Satellite-based Rainfall for Water Resources Application

  • Supattra, Visessri;Piyatida, Ruangrassamee;Teerawat, Ramindra
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.188-188
    • /
    • 2017
  • Rainfall is an important input to hydrological models. The accuracy of hydrological studies for water resources and floods management depend primarily on the estimation of rainfall. Thailand is among the countries that have regularly affected by floods. Flood forecasting and warning are necessary to prevent or mitigate loss and damage. Merging near real time satellite-based precipitation estimation with relatively high spatial and temporal resolutions to ground gauged precipitation data could contribute to reducing uncertainty and increasing efficiency for flood forecasting application. This study tested the applicability of satellite-based rainfall for water resources management and flood forecasting. The objectives of the study are to assess uncertainty associated with satellite-based rainfall estimation, to perform bias correction for satellite-based rainfall products, and to evaluate the performance of the bias-corrected rainfall data for the prediction of flood events. This study was conducted using a case study of Thai catchments including the Chao Phraya, northeastern (Chi and Mun catchments), and the eastern catchments for the period of 2006-2015. Data used in the study included daily rainfall from ground gauges, telegauges, and near real time satellite-based rainfall products from TRMM, GSMaP and PERSIANN CCS. Uncertainty in satellite-based precipitation estimation was assessed using a set of indicators describing the capability to detect rainfall event and efficiency to capture rainfall pattern and amount. The results suggested that TRMM, GSMaP and PERSIANN CCS are potentially able to improve flood forecast especially after the process of bias correction. Recommendations for further study include extending the scope of the study from regional to national level, testing the model at finer spatial and temporal resolutions and assessing other bias correction methods.

  • PDF

Development of Urban Flood Warning System Using Regression Analysis (회귀분석에 의한 도시홍수 예보시스템의 개발)

  • Lee, BeumHee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.4B
    • /
    • pp.347-359
    • /
    • 2010
  • A simple web-based flood forecasting system using data from stage and rainfall monitoring stations was developed to solve the difficulty that real-time forecasting model could not get the reliabilities because of assumption of future rainfall duration and intensity. The regression model in this research could forecast future water level of maximum 2 hours after using data from stage and rainfall monitoring stations in Daejeon area. Real time stage and rainfall data were transformed from web-sites of Geum River Flood Control Office & Han River Flood Control Office based MS-Excel 2007. It showed stable forecasts by its maximum standard deviation of 5 cm, means of 1~4 cm and most of improved coefficient of determinations were over 0.95. It showed also more researches about the stationarity of watershed and time-series approach are necessary.

Development for rainfall classification based on local flood vulnerability using entropy weight in Seoul metropolitan area (엔트로피 가중치를 활용한 지역별 홍수취약도 기반의 서울지역 강우기준 산정기법)

  • Lee, Seonmi;Choi, Youngje;Lee, Eunkyung;Ji, Jungwon;Yi, Jaeeung
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.4
    • /
    • pp.267-278
    • /
    • 2022
  • Recently Flood damage volume has increased as heavy rain has frequently occurred. Especially urban areas are a vulnerability to flooding damage because of densely concentrated population and property. A local government is preparing to mitigate flood damage through the heavy rain warning issued by Korea Meteorological Administration. This warning classification is identical for a national scale. However, Seoul has 25 administrative districts with different regional characteristics such as climate, topography, disaster prevention state, and flood damage severity. This study considered the regional characteristics of 25 administrative districts to analyze the flood vulnerability using entropy weight and Euclidean distance. The rainfall classification was derived based on probability rainfall and flood damage rainfall that occurred in the past. The result shows the step 2 and step 4 of rainfall classification was not significantly different from the heavy rain classification of the Korea Meteorological Administration. The flood vulnerability is high with high climate exposure and low adaptability to climate change, and the rainfall classification is low in the northern region of Seoul. It is possible to preemptively respond to floods in the northern region of Seoul based on relatively low rainfall classification. In the future, we plan to review the applicability of rainfall forecast data using the rainfall classification of results from this study. These results will contribute to research for preemptive flood response measures.