• Title/Summary/Keyword: flip flop

Search Result 157, Processing Time 0.02 seconds

Area- and Energy-Efficient Ternary D Flip-Flop Design

  • Taeseong Kim;Sunmean Kim
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.3
    • /
    • pp.134-138
    • /
    • 2024
  • In this study, we propose a ternary D flip-flop using tristate ternary inverters for an energy-efficient ternary circuit design of sequential logic. The tristate ternary inverter is designed by adding the functionality of the transmission gate to a standard ternary inverter without an additional transistor. The proposed flip-flop uses 18.18% fewer transistors than conventional flip-flops do. To verify the advancement of the proposed circuit, we conducted an HSPICE simulation with CMOS 28 nm technology and 0.9 V supply voltage. The simulation results demonstrate that the proposed flip-flop is better than the conventional flip-flop in terms of energy efficiency. The power consumption and worst delay are improved by 11.34% and 28.22%, respectively. The power-delay product improved by 36.35%. The above simulation results show that the proposed design can expand the Pareto frontier of a ternary flip-flop in terms of energy consumption. We expect that the proposed ternary flip-flop will contribute to the development of energy-efficient sensor systems, such as ternary successive approximation register analog-to-digital converters.

Design and Measurement of an SFQ OR gate composed of a D Flip-Flop and a Confluence Buffer (D Flip-Flop과 Confluence Buffer로 구성된 단자속 양자 OR gate의 설계와 측정)

  • 정구락;박종혁;임해용;장영록;강준희;한택상
    • Progress in Superconductivity
    • /
    • v.4 no.2
    • /
    • pp.127-131
    • /
    • 2003
  • We have designed and measured an SFQ(Single Flux Quantum) OR gate for a superconducting ALU (Arithmetic Logic Unit). To optimize the circuit, we used WRspice, XIC and Lmeter for simulations and layouts. The OR gate was consisted of a Confluence Buffer and a D Flip-Flop. When a pulse enters into the OR gate, the pulse does not propagate to the other input port because of the Confluence Buffer. A role of D Flip-Flip is expelling the data when the clock is entered into D Flip-Flop. For the measurement of the OR gate operation, we attached three DC/SFQs, three SFQ/DCs and one RS Flip -Flop to the OR gate. DC/SFQ circuits were used to generate the data pulses and clock pulses. Input frequency of 10kHz and 1MHzwere used to generate the SFQ pulses from DC/SFQ circuits. Output data from OR gate moved to RS flip -Flop to display the output on the oscilloscope. We obtained bias margins of the D Flip -Flop and the Confluence Buffer from the measurements. The measured bias margins $\pm$38.6% and $\pm$23.2% for D Flip-Flop and Confluence Buffer, respectively The circuit was measured at the liquid helium temperature.

  • PDF

Dual Edge-Triggered NAND-Keeper Flip-Flop for High-Performance VLSI

  • Kim, Jae-Il;Kong, Bai-Sun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.3 no.2
    • /
    • pp.102-106
    • /
    • 2003
  • This paper describes novel low-power high-speed flip-flop called dual edge-triggered NAND keeper flip-flop (DETNKFF). The flip-flop achieves substantial power reduction by incorporating dual edge-triggered operation and by eliminating redundant transitions. It also minimizes the data-to-output latency by reducing the height of transistor stack on the critical path. Moreover, DETNKFF allows negative setup time to provide useful attribute of soft clock edge by incorporating the pulse-triggered operation. The proposed flip-flop was designed using a $0.35{\;}\mutextrm{m}$ CMOS technology. The simulation results indicate that, for the typical input switching activity of 0.3, DETNKFF reduces power consumption by as much as 21 %. Latency is also improved by about 6 % as compared to the conventional flip-flop. The improvement of power-delay product is also as much as 25 %.

High Speed Pulse-based Flip-Flop with Pseudo MUX-type Scan for Standard Cell Library

  • Kim, Min-Su;Han, Sang-Shin;Chae, Kyoung-Kuk;Kim, Chung-Hee;Jung, Gun-Ok;Kim, Kwang-Il;Park, Jin-Young;Shin, Young-Min;Park, Sung-Bae;Jun, Young-Hyun;Kong, Bai-Sun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.6 no.2
    • /
    • pp.74-78
    • /
    • 2006
  • This paper presents a high-speed pulse-based flip-flop with pseudo MUX-type scan compatible with the conventional master-slave flip-flop with MUX-type scan. The proposed flip-flop was implemented as the standard cell library using Samsung 130nm HS technology. The data-to-output delay and power-delay-product of the proposed flip-flop are reduced by up to 59% and 49%, respectively. By using this flop-flop, ARM11 softcore has achieved the maximum 1GHz operating speed.

On the Characteristics of Series Connected Flip-Flop and Drive of Nixie Tube Operation (Series Connected Flip-Flop의 특성과 표시방전관의 구동에 대하여)

  • 정만영;안병성;김준호
    • 전기의세계
    • /
    • v.13 no.3
    • /
    • pp.21-27
    • /
    • 1964
  • A method of triggering a series connected complementary transister flip-flop is described. Also measurements have been made for the operation region with respect to the input pulse variation. This circuit is compared with a Eccles-Jordan flip-flop when it used as a Nixie tube driver of a neon lamp driyer.

  • PDF

Design of a fast double edge traiggered D-tyupe flip-flop (고속 듀얼 모서리 천이 D형 플립-플롭의 설계)

  • 박영수
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.1
    • /
    • pp.10-14
    • /
    • 1998
  • In this paper a double edge triggered (DET) filp-flop is proposed which changes its output state at both the positive and the negative edge transitions of the triggering input. DET filp-flop has advantages in terms of speed and power dissipation over single edge triggered (SET) filp-flop has proposed DET flip-flop needs only 12 MOS transistors and can operate at clock speed of 500 MHz. Also, the power dissipation has decreased about 33% in comparison to SET flip-flop.

  • PDF

A Design of a Ternary Storage Elements Using CMOS Ternary Logic Gates (CMOS 3치 논리 게이트를 이용한 3치 저장 소자 설계)

  • Yoon, Byoung-Hee;Byun, Gi-Young;Kim, Heung-Soo
    • Journal of IKEEE
    • /
    • v.8 no.1 s.14
    • /
    • pp.47-53
    • /
    • 2004
  • We present the design of ternary flip-flop which is based on ternary logic so as to process ternary data. These flip-flops are composed with ternary voltage mode NMAX, NMIN, INVERTER gates. These logic gate circuits are designed using CMOS and obtained the characteristics of a lower voltage, lower power consumption as compared to other gates. These circuits have been simulated with the electrical parameters of a standard 0.35um CMOS technology and 3.3Volts supply voltage. The architecture of proposed ternary flip-flop is highly modular and well suited for VLSI implementation, only using ternary gates.

  • PDF

Low Power Flip-Flop Circuit with a Minimization of Internal Node Transition (인터널 노드 변환을 최소화시킨 저전력 플립플롭 회로)

  • Hyung-gyu Choi;Su-yeon Yun;Soo-youn Kim;Min-kyu Song
    • Transactions on Semiconductor Engineering
    • /
    • v.1 no.1
    • /
    • pp.14-22
    • /
    • 2023
  • This paper presents a low-power flip-flop(FF) circuit that minimizes the transition of internal nodes by using a dual change-sensing method. The proposed dual change-sensing FF(DCSFF) shows the lowest dynamic power consumption among conventional FFs, when there is no input data transition. From the measured results with 65nm CMOS process, the power consumption has been reduced by 98% and 32%, when the data activity is 0% and 100%, respectively, compared to conventional transmission gate FF(TGFF). Further, compared to change-sensing FF(CSFF), the power consumption of proposed DCSFF is smaller by 30%.

Demonstration of rapid single-flux-quantum RS flip-flop using YBCO/Co-YBCO/YBCO ramp-edge Josephson junction with and without ground plane (YBCO/Co-YBCO/YBCO ramp-edge 접합을 이용한 RS flip-flop 회로 제작과 동작)

  • Kim, Jun-Ho;Sung, Geon-Yong;Park, Jong-Hyeok;Kim, Chang-Hun;Jung, Gu-Rak;Hahn, Taek-Sang;Kang, Jun-Hui
    • 한국초전도학회:학술대회논문집
    • /
    • v.10
    • /
    • pp.189-192
    • /
    • 2000
  • We fabricated rapid single-flux-quantum RS flip-flop circuits with and without Y$_1$Ba$_2$Cu$_3$O$_{7-{\delta}}$(YBCO) ground plane. The circuit consists of SNS-type ramp-edge Josephson junctions that have cobalt-doped YBCO and Sr$_2$AITaO$_6$(SAT) for barrier layer and insulator layer, respectively. The fabricated Josephson junction showed a typical RSJ-like current-voltage(I-V) characteristics above 50K. We sucessfuly demonstrated RS flip-flop at temperatures around 50K. The RS flip-flop fabricated on ground plane showed more definite set and reset state in voltage-flux(V-${\phi}$) modulation curve for read SQUID, which may be attributed to a shielding effect of the YBCO ground plane.

  • PDF

Variable Sampling Window Flip-Flops for High-Speed Low-Power VLSI (고속 저전력 VLSI를 위한 가변 샘플링 윈도우 플립-플롭의 설계)

  • Shin Sang-Dae;Kong Bai-Sun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.8 s.338
    • /
    • pp.35-42
    • /
    • 2005
  • This paper describes novel flip-flops with improved robustness and reduced power consumption. Variable sampling window flip-flop (VSWFF) adjusts the width of the sampling window according to input data, providing robust data latching as well as shorter hold time. The flip-flop also reduces power consumption for higher input switching activities as compared to the conventional low-power flip-flop. Clock swing-reduced variable sampling window flip-flop (CSR-VSWFF) reduces clock power consumption by allowing the use of a small swing clock. Unlike conventional reduced clock swing flip-flops, it requires no additional voltage higher than the supply voltage, eliminating design overhead related to the generation and distribution of this voltage. Simulation results indicate that the proposed flip-flops provide uniform latency for narrower sampling window and improved power-delay product as compared to conventional flip-flops. To evaluate the performance of the proposed flip-flops, test structures were designed and implemented in a $0.3\mu m$ CMOS process technology. Experimental result indicates that VSWFF yields power reduction for the maximum input switching activity, and a synchronous counter designed with CSR-VSWFF improves performance in terms of power consumption with no use of extra voltage higher than the supply voltage.