• 제목/요약/키워드: flight control system)

검색결과 882건 처리시간 0.031초

항공기 시뮬레이터 조종력 제어시스템의 견실 $\mu$-제어기 설계 (Robust $\mu$-Controller design for Control Loading System of Flight Simulator)

  • 방경호
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1998년도 추계종합학술대회 논문집
    • /
    • pp.405-408
    • /
    • 1998
  • Generally, the principle function of simulator control loading system is to provide the pilot or student with the "feel" of the actual aircraft flight control systems during flight, taxing, and in malfunction. Flight control "feel" is the resistance felt by the pilot when moving a control stick or pedal, coupled with the amount of control surface deflection, and hence aircraft response, resulting from the input. Therefore, the control loading servo must be capable of performing to some general list of requirements derived from real aircraft control forces. In this paper, we deal with a $\mu-controller$ design for a control loading system of the flight simulator. For this, we derive a frequency response of the hydraulic system from the identification data and then design a controller using a $\mu-synthesis$ method. Under the same condition of simulation, $\mu-controller$ provides the superior performance than PID controller.than PID controller.

  • PDF

PC104를 이용한 비행제어 시스템 개발을 위한 지상시험 (Ground Test of the Flight Control System Using PC104)

  • 허치훈;노민식;조겸래;이대우
    • 한국항공우주학회지
    • /
    • 제35권5호
    • /
    • pp.452-459
    • /
    • 2007
  • 본 논문에서는 PC104를 메인프로세서로 사용하여 GPS와 IMU를 이용한 비행제어시스템을 구축하였다. 안전을 위해 PIC16을 이용한 자동/수동 변환 모듈을 제작하였으며, 계속 목표 지점을 향해 비행하기 위해 호밍 방식의 유도 알고리즘을 구성하였다. 지상 실험을 통해 각각의 시스템이 원활하게 작동하는지 확인하였으며 상용 비행제어시스템과 유사한 출력을 나타냄을 확인함으로써 본 시스템이 무인항공기 제어시스템으로 사용될 수 있음을 보였다

항공기 비정상 자세, 고도 및 속도 회복을 위한 자동회복장치 설계 및 검증에 관한 연구 (A Study on Design and Validation of Pilot Activated Recovery System to Recover Aircraft Abnormal Attitude, Altitude and Speed)

  • 김종섭;강임주
    • 제어로봇시스템학회논문지
    • /
    • 제14권12호
    • /
    • pp.1302-1312
    • /
    • 2008
  • Relaxed Static Stability(RSS) has been applied to improve flight performance of modern version supersonic jet fighters. Flight control systems are necessary to stabilize an unstable aircraft and to provide adequate handling qualities. Also, flight control systems of modern aircraft employ many safety measure to cope with emergency situations such as a pilot unknown attitude flight conditions of an aircraft in night flight-testing. This situation is dangerous because the aircraft can lose if the pilot not take recognizance of situation. The system called the "Pilot Activated Recovery System" or PARS, provided a pilot initiated automatic maneuver capable of an aircraft recoveries in situations of unusual attitudes, speed and altitude. This paper addresses the concept of PARS with AARS(Automatic Attitude Recovery System), ATCS(Automatic Thrust Control System) and MARES(Minimum Altitude Recovery Estimation System), and this control law is designed by nonlinear control law design process based on model of supersonic jet trainer. And, this control law is verified by real-time pilot evaluation using an HQS(Handling Quality Simulator). The result of evaluation reveals that the these systems support recovery of an aircraft unusual attitude and speed, and improve a safety of an aircraft.

항공기 피치 조종력 비행시험 (Flight Test of Pitch Control Force for an Airplane)

  • 이정훈
    • 항공우주시스템공학회지
    • /
    • 제8권3호
    • /
    • pp.20-26
    • /
    • 2014
  • This paper presents the procedures and the results of the pitch control force via flight test for a light airplane in order to make out the stability of the aircraft and the compliance with concerned regulation. The flight test procedures were determined in order to obtain the aircraft type certification. The instrumentation equipments including airspeed indicator, accelerometer, and pitch control force measurement tools are used to perform the flight test. For the flight test, the airspeed and the pitch control force with related normal acceleration are measured sustaining turn flight with bank angle derived from trim speed. The flight test results showed that the handling qualities of the airplane are complied with the KAS-23, the regulation of the Korean government for the light airplane type certification.

Design of learning flight control system via input matching

  • Uchikado, Shigeru;Kanai, Kimio;Osa, Yasuhiro;Tanaka, Kanya
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1995년도 Proceedings of the Korea Automation Control Conference, 10th (KACC); Seoul, Korea; 23-25 Oct. 1995
    • /
    • pp.364-367
    • /
    • 1995
  • In this paper, a design method of learning flight control system via input matching is proposed. The proposed learning control system is a simple structure which has an artificial neural network and feedback mechanism, and it is a useful method to control nonlinear systems.

  • PDF

In Flight Simulation for Flight Control Law Evaluation of Fly-by-Wire Aircraft (I)

  • Ko, Joon-Soo;Lee, Ho-Keun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.2560-2565
    • /
    • 2003
  • The paper presented here covers the work associated with the flight control law design, ground based and in flight simulation and handling qualities assessment of the Fly-by-Wire type Aircraft (FBWA). The control law was designed for the most unstable aircraft configuration flight regime for the target aircraft (FBWA). The ground based simulation including math-model, real-time pilot-in-the-loop and iron bird simulation were used for validation of the control law before the experimental in-flight simulation on the IFS (In.Flight-Simulator) aircraft. The flight tests results showed that Level 1 handling qualities for the most unstable flight regime were achieved.

  • PDF

항공관제 시스템에서 항공기 공중충돌 경고기능의 설계 및 구현 (The Design and Implementation of the Collision Avoidance Warning Function in the Air Traffic Control System)

  • 송진오;심동섭;김기형
    • 한국군사과학기술학회지
    • /
    • 제12권2호
    • /
    • pp.213-221
    • /
    • 2009
  • An aircraft collision accident is a disaster that causes great losses of inventories and lives. Though a collision avoidance warning function is provided automatically to pilots in the aircrafts by the enhancement of the aircraft capability, achieving fast decision-making to escape a collision situation is a complex and dangerous work for pilots. If an in-flight collision situation is controlled by the air traffic control system which monitors all airplanes in the air, it would be more efficient to prevent in-flight collisions because it can handle the emergency before the pilot's action. In this paper, we develop the collision avoidance warning function in the air traffic control system. Specifically, we design and implement the five stages of the collision avoidance function, and propose a visualization method which could effectively provide the operators with the trajectories and altitudes of the aircrafts in a collision situation. By developing an in-flight collision warning function in the air traffic control system that visualizes flight patterns through the state transition data of in-flight aircrafts on the flight path lines, it can effectively prevent in-flight collisions with traffic alerts. The developed function allows operators to effectively select and control the aircraft in a collision situation by providing the operators with the expected collision time, the relative distance, and the relative altitude while assessing the level of alert, and visualizing the alert information which includes the Attention-Warning-Alert phase via embodying the TCAS standard. With the developed function the air traffic control system could sense an in-flight collision situation before the pilot's decision-making moment.

T-50 형상 재구성 모드의 항공기 비행 안정성에 관한 연구 (A Study on Aircraft Flight Stability of T-50 Air Data Reconfiguration Mode)

  • 김종섭;황병문;황민환;배명환
    • 한국항공우주학회지
    • /
    • 제33권5호
    • /
    • pp.57-64
    • /
    • 2005
  • 현대의 고성능 전투기에 탑재되어 있는 전기식 비행제어계통(Digital Fly-By-Wire Flight Control System)은 통합 다기능 감지기(IMFP : Integrated Multi-Function Probe)에 의해 항공기의 고도/속도/받음각 정보를 얻는다. T-50에 적용되어 있는 3개의 IMFP는 3중 결함 및 분리되지 않는 2중 결함에 대해서 비행 안정성(Flight Stability)을 확보하기 위해 형상 재구성 모드(Air Data Reconfiguration Mode)를 제어법칙에 적용했다. 본 논문에서는 항공기 운용 시 발생할 수 있는 IMFP 결함으로 인한 형상 재구성 모드 제어법칙에 대해, 비행 안정성을 해석하기 위하여 선형해석(Linear Analysis) 및 HQS( Handling Quality Simulator) 조종사 시뮬레이션을 수행하였고, T-50 비행시험 시, 발생했던 IMFP 결함으로 인해 제어법칙이 형상 재구성 모드로 적용되었던 사례를 제시했다. 그 결과, T-50 훈련기의 제어법칙이 형상 재구성 모드로 전환될 경우, 항공기 안정성에는 영향이 없다는 것을 알았다.

고유구조 지정 기능을 갖는 LQR 설계및 비행제어시스템에의 응용 (LQR/Eigenstructure assignment design with an application to a flight control system)

  • 최재원;서영봉
    • 제어로봇시스템학회논문지
    • /
    • 제4권3호
    • /
    • pp.280-288
    • /
    • 1998
  • In this paper, a novel relation between the weighting matrix Q in LQR and the eigenstructure of the desired closed-loop system is proposed. Thus, the state feedback gain with the desired eigenstructure in the LQR can be obtained. The proposed scheme is applied to design a simple 3rd-order system and a flight control system design to show the usefulness of the scheme.

  • PDF

Three-dimensional Guidance Law for Formation Flight of UAV

  • Min, Byoung-Mun;Tahk, Min-Jea
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.463-467
    • /
    • 2005
  • In this paper, the guidance law applicable to formation flight of UAV in three-dimensional space is proposed. The concept of miss distance, which is commonly used in the missile guidance laws, and Lyapunov stability theorem are effectively combined to obtain the guidance commands of the wingmen. The propose guidance law is easily integrated into the existing flight control system because the guidance commands are given in terms of velocity, flight path angle and heading angle to form the prescribed formation. In this guidance law, communication is required between the leader and the wingmen to achieve autonomous formation. The wingmen are only required the current position and velocity information of the leader vehicle. The performance of the proposed guidance law is evaluated using the complete nonlinear 6-DOF aircraft system. This system is integrated with nonlinear aerodynamic and engine characteristics, actuator servo limitations for control surfaces, various stability and control augmentation system, and autopilots. From the nonlinear simulation results, the new guidance law for formation flight shows that the vehicles involved in formation flight are perfectly formed the prescribed formation satisfying the several constraints such as final velocity, flight path angle, and heading angle.

  • PDF