• 제목/요약/키워드: flexure hinge

검색결과 128건 처리시간 0.023초

유연 힌지를 이용한 초정밀 3자유도 병렬 매니퓰레이터 개발 (Development of 3-DOF Parallel Manipulator Using Flexure Hinge)

  • 신동익;김영수;서승환;한창수;최두선;황경현
    • 한국정밀공학회지
    • /
    • 제26권7호
    • /
    • pp.127-133
    • /
    • 2009
  • We present a $3-{\underline{P}}RS$ compliant parallel manipulator actuated by PZTs. The motion ranges are $400-{\mu}m$ translation to the z-direction and 5.7-mrad rotation about any axis on the x-y plane. A mechanical amplifier whose advantage is approximately 5.5 is designed and integrated with flexure revolute and spherical joints in a monolithic way. We evaluated the performance of the system: kinematic and dynamic characteristics. In kinematic point of view, the flexures play the roles of conventional mechanism but any nonlinearity such as dead-zone and backlash, which make it possible to achieve the steady-state resolution less than $0.1{\mu}m$. The system shows resonance near 86 Hz with high magnitude and, therefore, poor transient response. But the settling is faster when the flexures are strained higher.

초정밀 스테이지 설계 및 제작

  • 강중옥;한창수;홍성욱
    • 한국반도체및디스플레이장비학회:학술대회논문집
    • /
    • 한국반도체및디스플레이장비학회 2003년도 추계학술대회 발표 논문집
    • /
    • pp.177-181
    • /
    • 2003
  • This paper presents a 3-axis fine positioning stage. All the procedure concerning the design and fabrication of the stage are described. The stage considered here is composed of flexure hinges, piezoelectric actuators and their peripherals. A special flexure hinge is adopted to be able to actuate the single stage in three axes at the same time. A ball contact mechanism is introduced into the piezoelectric actuator to avoid the cross talk among the axes. The final design is obtained with the theoretical analysis on the stage. An actual fine stage is developed and the design specifications are verified through an experiment.

  • PDF

초정밀 3축 이송 스테이지의 설계, 모델링 및 해석 (Design, Modeling and Analysis of a 3-axis Fine Positioning Stage)

  • 강중옥;서문훈;한창수;홍성욱
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.989-992
    • /
    • 2002
  • This paper presents a procedure far design, modeling and analysis of a fine positioning stage. The stage considered here is composed of flexure hinges, piezoelectric actuators and their peripherals. Through a series of analysis, the structural analysis model is simplified as a rigid body(the moving part) and springs (the flexure hinges). An experimental design procedure is applied to determine optimum design variables for flexure hinges. The optimum variables are validated through a numerical test. A sensitivity analysis on the notch positions is also performed to obtain a guideline of fabrication accuracy for the stage.

  • PDF

미세 부품 조작을 위한 탄성힌지 기반 압전소자 구동형 초정밀 머니플레이션 시스템 (A Piezo-driven Fine Manipulation System Based on Flexure Hinges for Manipulating Micro Parts)

  • 최기봉;이재종;김기홍;고국원
    • 제어로봇시스템학회논문지
    • /
    • 제15권9호
    • /
    • pp.881-886
    • /
    • 2009
  • This paper presents a manipulation system consisting of a coarse/fine XY positioning system and an out-of-plane manipulator. The object of the system is to conduct tine positioning and manipulation of micro parts. The fine stage and the out-of-plane manipulator have compliant mechanisms with flexure hinges, which are driven by stack-type piezoelectric elements. In the fine stage, the compliant mechanism plays the roles of motion guide and displacement amplification. The out-of-plane manipulator contains three piezo-driven compliant mechanisms for large working range and fine resolution. For large displacement, the compliant mechanism is implemented by a two-step displacement amplification mechanism. The compliant mechanisms are manufactured by wire electro-discharge machining for flexure hinges. Experiments demonstrate that the developed system is applicable to a fine positioning and fine manipulation of micro parts.

휨 구조시스템의 구조디자인적 구성요소와 디자인 조합 수법 분석 (A Study on Design Methods and the Composition Elements in Flexure Structure Systems)

  • 이주나
    • 한국공간구조학회논문집
    • /
    • 제16권1호
    • /
    • pp.73-84
    • /
    • 2016
  • This study analyzes the four composition elements : profile, anchorage and connection, material and member rigidity, stability, as the main composition design elements of flexure structure systems, in order to explore possibilities for more various structure designs in architectures with flexure structure system. It also examines typical design methods that use the mentioned four composition elements. At the results, this research presents an understanding of the differences between funicular shape and non-funicular shape and mechanical features of the shapes in the profile element, regarding to the ratio of rise height to span length(f/l). Also, the typical design methods are presented for the designable usages of the hinge joints and the fix joints, and for the applications of member rigidity expressed by the index of the ratio of member depth to span length(d/l). And it was presented that connection styles, addition of brace members, placement of shear walls are the main design methods in the stability element. This data would be useful to architectural designs concerning integrated design with structures.

탄성힌지를 이용한 초정밀 통신용 미러 구동 6축 메커니즘 구현과 실험적 강성 모델링 (Design of 6 DOF Mechanism with Flexure Joints for telecommunication mirror and Experimental Stiffness Modeling)

  • 강병훈
    • 한국인터넷방송통신학회논문지
    • /
    • 제19권6호
    • /
    • pp.169-174
    • /
    • 2019
  • 최근 원격통신용 미러의 정밀 제어를 위한 초정밀 구동 메커니즘 설계에 많은 연구가 진행되고 있다. 본 연구에서는 초정밀 구동 메카니즘의 구성 조건을 만족하기 위하여 마이크로미터(um)의 분해능을 가진 탄성힌지(flexure hinge)를 이용한 6자유도 스테이지 메카니즘을 제안한다. 탄성힌지를 조인트로 이용하여 공간상의 6자유도 스테이지를 설계하고, 탄성힌지의 탄성변형을 이용하여 반복적인 운동을 제공한다. 공간상의 6 자유도 스테이지를 개발하기 위하여 탄성힌지를 이용한 평면상의 2 자유도 스테이지를 설계하고 이를 조합하여 6 자유도 스테이지를 제작하였다. 유한요소 해석을 통하여 단위입력에 대한 최대 출력변위를 생성하는 탄성힌지의 크기와 형상을 결정하였고, 전체 스테이지를 구동 할 때, 개별 탄성힌지가 탄성 영역 안에서 구동됨을 유한요소 해석을 통하여 증명하였다. 또한 전체 스테이지 구동의 변위보정과 강성검증을 실험적으로 증명하기 위하여 CCD 레이저 변위센서를 이용한 스테이지 변위 해석을 진행하였다.

초정밀 스테이지 설계 및 제어 시스템에 관한 연구 (A study of the design and control system for the ultra-precision stage)

  • 박종성;정규원
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2005년도 춘계학술대회 논문집
    • /
    • pp.54-59
    • /
    • 2005
  • Recently, the ultra-precision stage is widely used in the fields of the nano-technology, specially in AFMs(Atomic Force Microscope) and STMs(Scanning Tunneling Microscope). In this paper, the ultra-precision stage which consists of flexure hinges, piezoelectric actuator, and ultra-precision linear encoder, is designed and developed. The guide mechanism which consisted of flexure hinges is analyzed by Finite Element Method. And we derived the transfer function of the system in 1st order system from step responses according to the magnitude. We performed simulation for the model to tune the control gain and applied the gains to the developed system. Experimental results found that the stage can be controlled in 5 nm resolution by PID controller.

  • PDF