• Title/Summary/Keyword: flexural study

Search Result 3,134, Processing Time 0.033 seconds

An Experimental Study on the Effect on Strength and Internal Structure for UHPC by Silics Fume Replacement Ratio (실리카 퓸의 첨가량에 따른 UHPC의 강도와 내부조직에 미치는 영향에 관한 실험적 연구)

  • Park, Jung-Jun;Kang, Su-Tae;Ryu, Gum-Sung;Koh, Gyung-Taek;Kim, Sung-Wook;Lee, Jang-Hwa
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.765-768
    • /
    • 2008
  • Silica fume is a very important gradient in UHPC(Ultra High Performance Concrete) and its amount is normally over 25% of cement(wt.%). But we surely need to comprehend the influence of the amount of silica fume on the UHPC. In this paper, it was investigated how the amount of silica fume influence on the properties such as fluidity, compressive strength, elastic modulus, and flexural strength. Furthermore, it was examined the internal micro structure on UHPC through the test of SEM and MIP. In results, If we properly use silica fume in UHPC, fluidity and strength of UHPC was increased. It can be ascertained through the test of MIP that silica fume effectively increased density of UHPC by posolanic reaction and acting as filler. Especially, In case of Cement to silica fume ratio$0.1{\sim}0.25%$, we can be concluded that UHPC has similar to mechanical property.

  • PDF

A Field Construction of PSC Girders with 60MPa Cast-in-Place High-Strength Concrete (60MPa급 현장 타설 고강도 PSC 거더의 시험 시공)

  • Min, Kyung-Hwan;Yang, Jun-Mo;Cheong, Hai-Moon;Ahn, Tae-Song;Yoon, Young-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.405-408
    • /
    • 2008
  • The most effective factors that improve sections and elongate spans of the prestressed concrete girders are shapes of sections and strengths of concretes, and the concrete strength is more influenced to enhance the allowable tensile strength on top and bottom fibers than increasing of flexural strength of girders. In this study, 60 MPa high-strength prestressed concretes were constructed at the Wonsoo Bridge where in the 1st section of expanding constructions of the Nonsan to Junjoo Expressway, the high-strength concrete was placed on the eight- 35 meters simple span IPC girders of four lanes of Nonsan direction. During casting of girder concretes, quality controls were carried out with continuing controls of surface moistures and corrections of the unit water using the air-meter methods right after batching. It was confirmed that compressive strengths of girder concretes ensure the target strength and the heat of hydrations of girder concrete were measured. Though using same materials and constructing methods, there're a wide range of strengths of each girder, so, when high-strength concretes cast in the place hereafter, a countermove should be prepared.

  • PDF

Influence of Reinforcement Ratio on the Hysteratic Behavior of Rectangle Column-Slab Connection (장방형 기둥-슬래브 접합부의 이력거동에 대한 철근비의 영향)

  • Cho, In-Jung;Choi, Myung-Shin;Shin, Sung-Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.53-56
    • /
    • 2008
  • In this investigation, results of laboratory tests on six reinforce concrete flat plate interior connections with elongated rectangular column support which has been used widely in tall residential buildings are presented. The purpose of this study is to evaluate an effect of column aspect ratio(${\beta}$c=$c_1/c_2$) on the hysteretic behavior under earthquake type loading. The aspect ratio of column section was taken as 0.33${\sim}$3($c_1/c_2$=1/3, 1/1, 3/1). Other design parameters such as flexural reinforcement ratio of slab and concrete strength was kept constant as ${\rho}$=1.0%, 1.5% and $f){ck}$=40MPa, respectively. Gravity shear load($V_g$) was applied by 30 percents of nominal vertical shear strength(0.3$V_o$) of the specimen. Experimental observations on punching failure pattern, peak lateral-load and story drift ratio at punching failure, and stiffness degradation were achieved and discussed in accordance with different column aspect ratio.

  • PDF

Porosity and Strength Properties of Permeable Concrete Using Limestone Mine Wastes as Coarse Aggregate for Concrete (폐석회석 굵은골재를 사용한 투수 콘크리트의 공극 및 강도특성)

  • 최연왕;임학상;정지승;문대중;신화철
    • Resources Recycling
    • /
    • v.12 no.2
    • /
    • pp.11-20
    • /
    • 2003
  • Limestone mine waste was used as a aggregate far permeable concrete. Void ratio, continuous void ratio, coefficient of permeability, compressive strength and flexural strength of concrete were measured and then the relationship between porosity and strength properties was investigated. Void ratio, continuous void ratio and strength properties of permeable concrete were greatly influenced by the grain size of aggregate and void filling ratio in comparison with the containing ratio of limestone mine waste. Furthermore, void ratio showed a good relation with continuous void ratio, and porosity of permeable concrete indicated a good relation with strength properties also. The coefficient of permeability of permeable concrete using limestone waste was over 0.2 cm/sec and was excellent result in comparison with normal concrete. Therefore, it could be expected that the limestone mine waste would be utilized as aggregate for pavement concrete, green concrete and water resource specie concrete in the results of this study.

A Study on the Fabrication and Mechanical Properties Evaluation of Natural Fiber Composites added Eco-friendly Materials (친환경 소재를 첨가한 천연섬유 복합재의 제조 및 기계적 물성 평가 연구)

  • Kim, Jae-Cheol;Lee, Dong-Woo;Prabhakar, M.N.;Song, Jung-Il
    • Composites Research
    • /
    • v.33 no.4
    • /
    • pp.213-219
    • /
    • 2020
  • Recently, global facing environmental issues have been raised caused by plastic waste. Hence, increasing the demand for interest in environmentally friendly materials. In this row, research on engineering composite materials also replacing the synthetic reinforcement by introducing natural fibers. However, focus on the strength and interfacial adhesion between matrix and reinforcement is very essential in natural fiber composite, which is insufficient in the literature. There are number of approaches for improving the mechanical strength of the composites, one of the common methods is to reinforce additive nanoparticles. The present investigation, bio-additives were synthesized utilizing bio-waste, cheap, bio-degradable sea-weed powder that could replace expensive nanomaterials and reinforced into the CFRP composite through Hand lay-up followed by a vacuum process. Mechanical properties were evaluated and analyzed through microanalysis. The results concluded that synthesized additives are effective for improving mechanical properties such as tensile, flexural, impact, and shear strength. Overall, the results confirmed that the fabricated composites have potential applications in the field of engineering applications.

Cylindrical bending of multilayered composite laminates and sandwiches

  • Sayyad, Atteshamuddin S.;Ghugal, Yuwaraj M.
    • Advances in aircraft and spacecraft science
    • /
    • v.3 no.2
    • /
    • pp.113-148
    • /
    • 2016
  • In a whole variety of higher order plate theories existing in the literature no consideration is given to the transverse normal strain / deformation effects on flexural response when these higher order theories are applied to shear flexible composite plates in view of minimizing the number of unknown variables. The objective of this study is to carry out cylindrical bending of simply supported laminated composite and sandwich plates using sinusoidal shear and normal deformation plate theory. The most important feature of the present theory is that it includes the effects of transverse normal strain/deformation. The displacement field of the presented theory is built upon classical plate theory and uses sine and cosine functions in terms of thickness coordinate to include the effects of shear deformation and transverse normal strain. The theory accounts for realistic variation of the transverse shear stress through the thickness and satisfies the shear stress free conditions at the top and bottom surfaces of the plate without using the problem dependent shear correction factor. Governing equations and boundary conditions of the theory are obtained using the principle of minimum potential energy. The accuracy of the proposed theory is examined for several configurations of laminates under various static loadings. Some problems are presented for the first time in this paper which can become the base for future research. For the comparison purpose, the numerical results are also generated by using higher order shear deformation theory of Reddy, first-order shear deformation plate theory of Mindlin and classical plate theory. The numerical results show that the present theory provides displacements and stresses very accurately as compared to those obtained by using other theories.

Theoretical and experimental serviceability performance of SCCs connections

  • Maghsoudi, Ali Akbar
    • Structural Engineering and Mechanics
    • /
    • v.39 no.2
    • /
    • pp.241-266
    • /
    • 2011
  • The Self Compacting Concrete, SCC is the new generation type of concrete which is not needed to be compacted by vibrator and it will be compacted by its own weight. Since SCC is a new innovation and also the high strength self compacting concrete, HSSCC behavior is like a brittle material, therefore, understanding the strength effect on the serviceability performance of reinforced self compacting concretes is critical. For this aim, first the normal and high strength self compacting concrete, NSSCC and HSSCC was designed. Then, the serviceability performance of reinforced connections consisting of NSSCC and HSSCC were investigated. Twelve reinforced concrete connections (L = 3 m, b = 0.15 m, h = 0.3 m) were simulated, by this concretes, the maximum and minimum reinforcement ratios ${\rho}$ and ${\rho}^{\prime}$ (percentage of tensile and compressive steel reinforcement) are in accordance with the provision of the ACI-05 for conventional RC structures. This study was limited to the case of bending without axial load, utilizing simple connections loaded at mid span through a stub (b = 0.15 m, h = 0.3 m, L = 0.3 m) to simulate a beam-column connection. During the test, concrete and steel strains, deflections and crack widths were measured at different locations along each member. Based on the experimental readings and observations, the cracked moment of inertia ($I_{cr}$) of members was determined and the results were compared with some selective theoretical methods. Also, the flexural crack widths of the members were measured and the applicability for conventional vibrated concrete, as for ACI, BS and CSA code, was verified for SCCs members tested. A comparison between two Codes (ACI and CSA) for the theoretical values cracking moment is indicate that, irrespective of the concrete strength, for the specimens reported, the prediction values of two codes are almost equale. The experimental cracked moment of inertia $(I_{cr})_{\exp}$ is lower than its theoretical $(I_{cr})_{th}$ values, and therefore theoretically it is overestimated. Also, a general conclusion is that, by increasing the percentage of ${\rho}$, the value of $I_{cr}$ is increased.

Analytical investigation of bending response of FGM plate using a new quasi 3D shear deformation theory: Effect of the micromechanical models

  • Bouiadjra, Rabbab Bachir;Mahmoudi, Abdelkader;Benyoucef, Samir;Tounsi, Abdelouahed;Bernard, Fabrice
    • Structural Engineering and Mechanics
    • /
    • v.66 no.3
    • /
    • pp.317-328
    • /
    • 2018
  • In this paper, a new refined quasi-three-dimensional (3D) shear deformation theory for the bending analysis of functionally graded plate is presented. The number of unknown functions involved in this theory is only four against five or more in the case of the other shear and normal deformation theories. Due to its quasi-3D nature, the stretching effect is taken into account in the formulation of governing equations. In addition, the effect of different micromechanical models on the bending response of these plates is studied. Various micromechanical models are used to evaluate the mechanical characteristics of the FG plates whose properties vary continuously across the thickness according to a simple power law. The present theory accounts for both shear deformation and thickness stretching effects by a parabolic variation of displacements across the thickness, and the zero traction boundary conditions on the top and bottom surfaces of the plate without using shear correction factors. The problem is solved for a plate simply supported on its edges and the Navier solution is used. The results of the present method are compared with others from the literature where a good agreement has been found. A detailed parametric study is presented to show the effect of different micromechanical models on the flexural response of a simply supported FG plates.

A review on pavement porous concrete using recycled waste materials

  • Toghroli, Ali;Shariati, Mahdi;Sajedi, Fathollah;Ibrahim, Zainah;Koting, Suhana;Mohamad, Edy Tonnizam;Khorami, Majid
    • Smart Structures and Systems
    • /
    • v.22 no.4
    • /
    • pp.433-440
    • /
    • 2018
  • Pavements porous concrete is a noble structure design in the urban management development generally enabling water to be permeated within its structure. It has also capable in the same time to cater dynamic loading. During the technology development, the quality and quantity of waste materials have led to a waste disposal crisis. Using recycled materials (secondary) instead of virgin ones (primary) have reduced landfill pressure and extraction demanding. This study has reviewed the waste materials (Recycled crushed glass (RCG), Steel slag, Steel fiber, Tires, Plastics, Recycled asphalt) used in the pavement porous concretes and report their respective mechanical, durability and permeability functions. Waste material usage in the partial cement replacement will cause the concrete production cost to be reduced; also, the concretes' mechanical features have slightly affected to eliminate the disposal waste materials defects and to use cement in Portland cement (PC) production. While the cement has been replaced by different industrial wastes, the compressive strength, flexural strength, split tensile strength and different PC permeability mixes have depended on the waste materials' type applied in PC production.

Mechanical properties by resin injection method of orthdontic acrylic resin (교정용 레진장치의 레진주입방법에 따른 기계적 특성)

  • Jo, Jeong-Ki
    • Journal of Digital Convergence
    • /
    • v.18 no.4
    • /
    • pp.341-346
    • /
    • 2020
  • Polymethyl methacrylate (PMMA), a self-curing resin mainly used in removable orthodontic appliances, is an acrylic resin mainly used in the field of modern dentistry. As an advantage, it has been used for a long time as a material for orthodontic devices in dentistry due to its color and volume, tissue affinity, and stability. The production of PMMA can be divided into self-polymerization method and thermal polymerization method according to activation method. Self-curing resins have long been used as orthodontic devices. The resin injection method is largely divided into a sprinkle-on method and a mixing method. In this study, we intend to test the mechanical properties according to the resin injection method of the orthodontic device, such as strength, modulus of elasticity, and surface roughness. There was no significant difference in strength as a result of three-point bending strength test on rectangular specimens (1.4 × 3.0 × 19.0 mm) of orthodontic PMMA. There was also no significant difference in hardness. There was no significant difference in surface roughness. It was confirmed that the orthodontic PMMA had no significant difference in mechanical properties according to the resin injection method of the orthodontic device.