• Title/Summary/Keyword: flexural repeated loading

Search Result 25, Processing Time 0.024 seconds

Cyclic Creep Model for the Deflection Calculation of Reinforced Concrete Flexural Members under Fatigue Loads (피로하중을 받는 철근콘크리트 휨부재의 처짐산정을 위한 반복크리프 모델)

  • 오병환;김동욱
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.5
    • /
    • pp.415-422
    • /
    • 2001
  • The present paper focuses on the development of a realistic analysis model for the deformation calculation of reinforced concrete beams subjected to fatigue loadings. The proposed model considers the effect of cyclic creep, which arises from the repeated loading, to calculate the deformation of reinforced concrete beams. A comprehensive experimental program has been set up to identify the deformation accumulation of reinforced concrete beams under repeated loadings. The major test variables were the concrete compressive strength and the magnitude of fatigue loads. The model was calibrated from the present test results. The proposed model allows more realistic analysis of reinforced concrete beams under fatigue loads, especially deformation accumulation of such beams.

An Experimental Study on Flexural/Shear Load Properties of SC(Steel Plate Concrete) Structure with Reinforced Concrete Joint (강판콘크리트 구조 이질접합부의 면외 휨/면내 전단하중 특성에 관한 실험연구)

  • Lee, Kyung-Jin;Hwang, Kyeong-Min;Hahm, Kyung-Won;Kim, Woo-Bum
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.2
    • /
    • pp.137-147
    • /
    • 2012
  • This paper describes an experimental study on the mechanical characteristic and behavior of a structure that has a joint between the reinforced concrete (RC) member and steel plate concrete (SC) member. An out-of-plane flexural test on an L-type test specimen and in-plane shear test on an I-type test specimen were carried out by means of repeated cyclic loading until their failure. Based on the results, the former showed pull-out failure mode of anchored vertical bars while the latter exhibited flexural failure mode of the basement member. These results reveal that the maximum capacity of the specimens is 96% and 82%, respectively, compared with the theoretical value.

An Experimental Study on the Flexural Fatigue Behavior of Glass fiber Reinforced Plastec Pipes (유리섬유 보강 플라스틱관의 휨 피로 거동에 관한 실험적 연구)

  • Jang, Dong-Il;Go, Jae-Won
    • Korean Journal of Materials Research
    • /
    • v.4 no.2
    • /
    • pp.219-226
    • /
    • 1994
  • In the comparison result of residual strain calculated from the load-strain curve under the repeated loading cycles, it was found that the larger the laminates is, the larger the stiffness of GFRP pipes under fatigue load is. This phenomenon is true until the fatigue failure. According to the S-N curves drawn by the regression analysis on the fatigue test results, the fatigue strength for percentage of the static ultimate strength increases by increasing the laminates of GFRP pipes. The fatigue strength for 2, 000, 000 repeated loading cycles In GFRP pipes with the laminates varing 15, 25, 35 shows 75.2%, 79.5%, 84.2% on the static ultimate strength, respectively.

  • PDF

Fatigue Behavior of Composite Beams with Pyramidal Shear Connector (입체트러스형 전단연결재를 갖는 합성판의 피로거동)

  • Lee, Kyeong-Dong;Han, Jae-Ik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.2
    • /
    • pp.211-216
    • /
    • 2002
  • A steel plate-concrete composite slab with pyramidal shear connectors, named TSC composite slab, is expected to have sufficient bending strength and flexural rigidity for loads during and after construction. Fatigue problems play an important role in designing composite slab as bridge decks under traffic conditions. In this paper, a series of fatigue tests was carried out on TSC beam specimens under various loading conditions, in order to evaluate the fatigue strength of TSC composite slabs. The results are as follows : (1) the fatigue failure of TSC composite beams results from the tensile fracture of bottom steel plate and shear connector, and (2) fatigue strength of the steel plate for two million cycles can be estimated to be $1144kgf/cm^2$ from the S-N curves.

Seismic Performance Evaluation of the Ceiling Bracket-type Modular System with Various Bracket Lengths and Bolt Types (천장 브래킷형 모듈러 시스템의 브래킷 길이와 볼트에 따른 내진성능평가)

  • Kwak, Eui-Shin;Kang, Chang-Hoon;Shon, Su-Deok;Lee, Seung-Jae
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.4
    • /
    • pp.25-33
    • /
    • 2018
  • In regard to modular systems, new methods, as well as middle and high-story unit design ideas, are currently being studied. These studies need to focus on the enhanced stiffness and seismic performance of these connections, and see that the development of fully restrained moment connections can improve the seismic performance. For this reason, this study evaluates the performance of the connections of the ceiling bracket-typed modular system through repeated loading tests and analyses. In order to compare them with these modular units, new unit specimens with the bracket connection being different from that of the traditional modular unit specimens were designed, and the results of repeated loading tests were analyzed. In the traditional units, the structural performances of both welding connection and bolt connection were evaluated. In regard to the testing results, the initial stiffness of the hysteresis curve was compared with the theoretical initial stiffness, and the features of all specimens were also analyzed with regard to the maximum moment. In addition, the test results were examined with regard to the connection flexural strength of the steel special moment frame specified under the construction criteria KBC2016. The connections, which were proposed in the test results, were found to be fully restrained moment connections for designing strong column-weak beams and meeting the requirements of seismic performance of special moment frames.

Fatigue performance evaluation of reinforced concrete element: Efficient numerical and SWOT analysis

  • Saiful Islam, A.B.M.
    • Computers and Concrete
    • /
    • v.30 no.4
    • /
    • pp.277-287
    • /
    • 2022
  • Due to the scarcity of extortionate experimental data, fatigue failure of the reinforced concrete (RC) element might be achieved economically adopting nonlinear finite element (FE) analysis as an alternative approach. However, conventional implicit dynamic analysis is expensive, quasi-static method overlooks interaction effects and inertia, direct cyclic analysis computes stabilized responses. Apart from this, explicit dynamic analysis may provide a numerical operating system for factual long-term responses. The study explores the fatigue behavior based on a simplified explicit dynamic solution employing nonlinear time domain analysis. Among fourteen RC beams, one beam is selected to validate under static loading, one under fatigue with the experimental study and other twelve to check the detail fatigue behavior. The SWOT (Strength, Weakness, Opportunities, Threats) analysis has been carried out to pinpoint the detail scenario in the adoption of numerical approach as an alternative to the experimental study. Excellent agreement of FE and experimental results is seen. The 3D nonlinear RC beam model at service fatigue limits is truthful to be used as an expedient contrivance to envisage the precise fatigue behavior. The simplified analysis approach for RC beam under fatigue offers savings in computation to predict responses providing acceptable accuracy rather than the complicated laboratory investigation. At higher frequency, the flexural failure occurs a bit earlier gradually compared to the repeated loading case of lower frequency. The deflection increases by 6%-10% at the end of first cycle for beams with increasing frequency of cyclic loading. However, at the end of fatigue loading, greater deflection occur earlier for higher load range because of more rapid stiffness degradation. For higher frequency, a slight boost in concrete compressive strains at an initial stage of loading has been seen indicating somewhat stepper increment. Stiffness degradation in larger loading cycle at same duration escalates the upsurge of the rate of strain in case of higher frequency.

Repeated Loading Test of Shear-Critical Reinforced Concrete Beams with Headed Shear Reinforcement (헤디드 바를 전단철근으로 사용한 철근콘크리트 보의 전단거동에 관한 반복하중 실험)

  • Kim, Young-Hoon;Lee, Joo-Ha;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.1 s.91
    • /
    • pp.47-56
    • /
    • 2006
  • The repeated loading responses of four shear-critical reinforced concrete beams with two different shear span-to-depth ratios, were studied. One series of beams was reinforced using pairs of bundled stirrups with $90^{\circ}$ standard hooks, haying free end extensions of $6d_b$. The companion beams contained shear reinforcement made with larger diameter headed bars anchored with 50mm diameter circular heads. A single headed bar had the same area as a pair of bundled stirrups and hence the two series were comparable. The test results indicate that beams containing headed bar stirrups have a superior performance to companion beams containing bundled standard stirrups with improved ductility, larger energy absorption and enhanced post-peak load carrying capability. Due to splitting of the concrete cover and local crushing, the hooks of the standard stirrups opened resulting in loss of anchorage. In contrast, the headed bar stirrups did not lose their anchorage and hence were able to develop strain hardening and also served to delay buckling of the flexural compression steel. Excellent load-deflection predictions were obtained by reducing the tension stiffening to account for repeated load effects.

Tensile Strain of Steel Fiber Reinforced Concrete under Fatigue Load (피로하중을 받는 강섬유보강콘크리트의 인장변형에 관한 연구)

  • 장동일;채원규;박철우;민인기
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1992.10a
    • /
    • pp.82-87
    • /
    • 1992
  • In this thesis, the fatigue tests were performed on a series of SFRC (steel fiber reinforced concrete)to investigate the flexural tensile behavior of SFRC varying with the steel fiber contents and the steel fiber aspect ratios. Beam specimens of 10$\times$10$\times$60cm are used. the specimen series are classified according to the steel fiber contents varying 0.5. 1.0, 1.5%, and to the steel fiber aspect ratios varying 60, 80, 100. The three point loading system was used in the fatigue tests. The minimum value of repeated loading was fixed at 10.0kgf and maximum value was 75% to static ultimate strength for periodically using concrete strain gages located at the lower end of the mid-span, and the stress-strain curves were drawn for each specimens, respectively. From the tests result, it was found that the larger steel fiber content and the smaller the steel fiber aspect ratio is , the tensile strain of SFRC under fatigue load proportionally increases. By the regression analysis on these results, the empirical formulae to predict the tensile strain of SFRC were suggested. In comparison of the tensile elastic modulus under fatigue load, it was also found that the larger steel fiber content and the smaller steel fiber aspect ratio is , the smaller decreasing rate of the stiffness of SFRC under fatigue load decreased.

  • PDF

Effect of cumulative seismic damage to steel tube-reinforced concrete composite columns

  • Ji, Xiaodong;Zhang, Mingliang;Kang, Hongzhen;Qian, Jiaru;Hu, Hongsong
    • Earthquakes and Structures
    • /
    • v.7 no.2
    • /
    • pp.179-199
    • /
    • 2014
  • The steel tube-reinforced concrete (ST-RC) composite column is a novel type of composite column, consisting of a steel tube embedded in reinforced concrete. The objective of this paper is to investigate the effect of cumulative damage on the seismic behavior of ST-RC columns through experimental testing. Six large-scale ST-RC column specimens were subjected to high axial forces and cyclic lateral loading. The specimens included two groups, where Group I had a higher amount of transverse reinforcement than Group II. The test results indicate that all specimens failed in a flexural mode, characterized by buckling and yielding of longitudinal rebars, failure of transverse rebars, compressive crushing of concrete, and steel tube buckling at the base of the columns. The number of loading cycles was found to have minimal effect on the strength capacity of the specimens. The number of loading cycles had limited effect on the deformation capacity for the Group I specimens, while an obvious effect on the deformation capacity for the Group II specimens was observed. The Group I specimen showed significantly larger deformation and energy dissipation capacities than the corresponding Group II specimen, for the case where the lateral cyclic loads were repeated ten cycles at each drift level. The ultimate displacement of the Group I specimen was 25% larger than that of the Group II counterpart, and the cumulative energy dissipated by the former was 2.8 times that of the latter. Based on the test results, recommendations are made for the amount of transverse reinforcement required in seismic design of ST-RC columns for ensuring adequate deformation capacity.

A Study on the Flexural Fatigue Behavior of R/C Beams Repaired with Concrete-Polymer Composites (유기 및 유기재료로 보수된 R/C 보의 휨 피로거동에 관한 연구)

  • 심종성;황의승;배인환;이은호
    • Magazine of the Korea Concrete Institute
    • /
    • v.7 no.6
    • /
    • pp.233-241
    • /
    • 1995
  • In this thesis, the fatigue tests were performed on a series of R /C beams repaired with co& crete-lmlyrner composites to investigate the fatigue bahavior. The three point loading system is used in the fatigue tests. In these tests, relations between the repeated loading cycles and mid-span deflections, number of repeated loading cycles when repaired beams were fractured, the bonding performance of repair materials were observed. On this basis, the mid-span deflections, the crack growth and failure mode of repaired R /C beams were studied. A S-N curve was drawn to present the fatigue strength of repaired beams. From the test results, it was shown that behavior of R /C beams repaired with polymer-cement series were very sirnillar to control beam about bonding performance, mid-span deflections and fatigue strength according to S-N curve drawn by the regression anlysis on the fatigue test results.