• 제목/요약/키워드: flexural failure load

검색결과 408건 처리시간 0.029초

Potential side-NSM strengthening approach to enhance the flexural performance of RC beams: Experimental, numerical and analytical investigations

  • Md. Akter, Hosen; Mohd Zamin, Jumaat;A.B.M. Saiful, Islam;Khalid Ahmed, Al Kaaf;Mahaad Issa, Shammas;Ibrahim Y., Hakeem;Mohammad Momeen, Ul Islam
    • Structural Engineering and Mechanics
    • /
    • 제85권2호
    • /
    • pp.179-195
    • /
    • 2023
  • The performance of reinforced concrete (RC) beam specimens strengthened using a newly proposed Side Near Surface Mounted (S-NSM) technology was investigated experimentally in this work. In addition, analytical and nonlinear finite element (FE) modeling was exploited to forecast the performance of RC members reinforced with S-NSM utilizing steel bars. Five (one control and four strengthened) RC beams were evaluated for flexural performance under static loading conditions employing four-point bending loads. Experimental variables comprise different S-NSM reinforcement ratios. The constitutive models were applied for simulating the non-linear material characteristics of used concrete, major, and strengthening reinforcements. The failure load and mode, yield and ultimate strengths, deflection, strain, cracking behavior as well as ductility of the beams were evaluated and discussed. To cope with the flexural behavior of the tested beams, a 3D non-linear FE model was simulated. In parametric investigations, the influence of S-NSM reinforcement, the efficacy of the S-NSM procedure, and the structural response ductility are examined. The experimental, numerical, and analytical outcomes show good agreement. The results revealed a significant increase in yield and ultimate strengths as well as improved failure modes.

Retrofitting of RC girders using pre-stressed CFRP sheets

  • Bansal, Prem Pal;Sharma, Raju;Mehta, Ankur
    • Steel and Composite Structures
    • /
    • 제20권4호
    • /
    • pp.833-849
    • /
    • 2016
  • Pre-stressing of existing structures using steel cables, FRP cables or FRP laminates has been successfully tried in the past. Retrofitting of beams using pre-stressed laminates does not utilize the full strength of the FRP due to de-bonding of the laminates before the fibre fracture. In the present study attempt has been made to overcome this problem by replacing the FRP laminates by the FRP sheets. In the present paper the effect of initial damage level and pre-stress level on strength, stiffness, cracking behaviour and failure mode of girders retrofitted using pre-stressed CFRP sheets has been studied. The results indicate that rehabilitation of initially damaged girders by bonding pre-stressed CFRP sheets improves the flexural behaviour of beams appreciably. However, it has been observed that with increase in pre-stressing force the load carrying capacity of the girders increases up to a particular level up to which the mode of failure is fibre fracture. Thereafter, the mode of failure shifts from fibre fracture to de-bonding and there is no appreciable increase in load carrying capacity with further increase in pre-stressing force.

부착되지 않은 텐돈을 갖는 PS 콘크리트 연속부재의 해석적 연구 (Analysis of Prestressed Concrete Continuous Members with Unbonded Tendons)

  • 문정호;이리형
    • 콘크리트학회지
    • /
    • 제7권6호
    • /
    • pp.197-208
    • /
    • 1995
  • 본 연구에서는 부착되지 않은 텐돈을 갖는 PS콘크리트 구조체에 대한 해석적 여구가 진행되었는데 해석결과는 기존의 실험결과들과 비교되었다. 기존의 실험 결과들로부터 하중변위 관계, 구조체의 파괴시 텐돈응력에 대한 설계식, 기존의 보통 철근량의 효과, 부재길이에 대한 부재두께의 효과, 하중의 종류에 따른 영향등을 해석적 연구와 병행하여 분석하였다. 총 12개의 실험결과가 분석되었는데, 그 중 6개는 2스팬 연속보이며, 나머지 6개는 3스팬 연속 슬래브였다. 해석 결과는 실험결과와 잘 일치함을 보여 주었으며, 구조체의 파괴시 텐돈의 응력은 기존의 보통 철근의 효과, 하중의 패턴, 텐돈의 형상 등에 따라 많은 영향을 받는 것으로 나타났다.

에폭시모르타르로 보강된 부식철근 RC보의 구조적 성능 (Structural Performance of Reinforcement corrosion RC Beams Strengthened with Epoxy Mortar System)

  • 한복규;홍건호;신영수;정란
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 봄 학술발표회 논문집
    • /
    • pp.769-774
    • /
    • 2000
  • The purpose of this study was to investigate the structural performance of reinforcement corrosion reinforced concrete beams strengthened with epoxy mortar system. Main test parameters are existence and the magnitude of the reinforcement corrosion and the reinforcing bar and the tensile reinforcement ratio of the specimens. eight beam specimens were tested to investigate the effectiveness of each test variables on maximum load capacity and failure mode. Test results showed that the ultimate moment of th specimens were higher tan the nominal moment and the flexural stiffness was increased about 2.5 times and the cracking moments occurred over 60% of the failure moment in comparison with same sized control beam. However, note that epoxy mortar may conduct member into brittle failure mode.

  • PDF

단부에 설비덕트를 포함하는 새로운 더블티 전단실험 (Shear Test on New Modified Double Tee Slabs including Service Ducts at the Ends)

  • 김연수;송형수;유정욱;이보경;이정우;유승룡
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(I)
    • /
    • pp.71-74
    • /
    • 2005
  • The increasement in the floor hight may be one of the most significant problem in the use of precast concrete double slab in the multi-story buildings. The modified double-tees including duct space at the ends of slab were considered in this study. The length and thickness of nib of modified double tee was increased to receive the uniform reaction from rectangular beam, while the original PCI dapped one to receive the point load from inverted tee beam to the leg of double tee. Shear tests were performed on the ends of the modified double tees which were designed by strut-tie model. The modified double tees generally show more ductile flexural failure in the long thickened nib. It is concluded that they show superior failure patterns than that of original dapped one with shear failure.

  • PDF

Compressive behavior of built-up open-section columns consisting of four cold-formed steel channels

  • Shaofeng, Nie;Cunqing, Zhao;Zhe, Liu;Yong, Han;Tianhua, Zhou;Hanheng, Wu
    • Steel and Composite Structures
    • /
    • 제45권6호
    • /
    • pp.907-929
    • /
    • 2022
  • Compression experiments were conducted to investigate the compressive behavior of built-up open-section columns consisting of four cold-formed steel channels (BOCCFSs) of different lengths, thicknesses, and cross-section sizes (OB90 and OB140). The load-displacement curves, failure modes, and maximum compression strength values were analyzed in detail. The tests showed that the failure modes of the OB90 specimens transformed from a large deformation concentration induced by local buckling to flexural buckling with the increase in the slenderness ratio. The failure modes of all OB140 specimens were deformation concentration, except for one long specimen, whose failure mode was flexural buckling. When the slenderness ratios of the specimens were less than 55, the failure modes were controlled by local buckling. Finite element models were built using ABAQUS software and validated to further analyze the mechanical behavior of the BOCCFSs. A parametric study was conducted and used to explore a wide design space. The numerical analysis results showed that when the screw spacing was between 150 mm and 450 mm, the difference in the maximum compression strength values of the specimens was less than 4%. The applicability and effectiveness of the design methods in Chinese GB50018-2002 and AISI-S100-2016 for calculating the compression strength values of the BOCCFSs were evaluated. The prediction methods based on the assumptions produced predictions of the strength that were between 33% to 10% conservative as compared to the tests and the finite element analysis.

강섬유 보강 초고성능 콘크리트 프리스트레스트 거더의 휨거동 실험 연구 (An Experimental Study on Flexural Behavior of Steel Fiber Reinforced Ultra High Performance Concrete Prestressed Girders)

  • 양인환;조창빈;김병석
    • 콘크리트학회논문집
    • /
    • 제22권6호
    • /
    • pp.777-786
    • /
    • 2010
  • 이 연구에서는 강섬유로 보강된 초고성능 콘크리트(UHPC)를 적용한 대형 크기의 프리스트레스트 콘크리트 거더의 정적하중재하실험을 통하여 휨거동 특성을 파악하고자 하였다. 이 연구결과는 추후 UHPC를 적용한 프리스트레스트 콘크리트 거더의 처짐산정 및 휨강도 산정 모델링에 주요한 기초적인 실험결과를 제공한다. 휨 하중하에서의 프리스트레스트 콘크리트 T-거더의 거동을 파악하기 위하여 강섬유를 혼입하였다. 강섬유는 원형단면의 직선형상이며, 콘크리트에서 2%의 부피비를 나타낸다. 거더는 압축강도 150~190 MPa의 UHPC를 이용하여 제작하였으며, 프리스트레스트 거더의 휨내력을 파악하고자 하였다. 실험결과는 강섬유 보강 UHPC가 거더의 균열제어 및 연성거동에 효과적임을 나타낸다. 강섬유 보강 UHPC를 적용한 프리스트레스트 거더의 파괴는 인장균열에서의 가교 역할(bridging effect)을 하는 강섬유의 뽐힘(pullout)과 더불어 발생한다. 강섬유의 뽑힘과 더불어 단면의 인장강도 손실이 발생하며, 이는 거더의 휨파괴를 유발한다. 또한, 도입 프리스트레스량이 거더의 휨강도에 영향을 미치는 것으로 나타난다.

Insights from LDPM analysis on retaining wall failure

  • Gili Lifshitz Sherzer;Amichai Mitelman;Marina Grigorovitch
    • Computers and Concrete
    • /
    • 제33권5호
    • /
    • pp.545-557
    • /
    • 2024
  • A real-case incident occurred where a 9-meter-high segment of a pre-fabricated concrete separation wall unexpectedly collapsed. This collapse was triggered by improperly depositing excavated soil against the wall's back, a condition for which the wall segments were not designed to withstand lateral earth pressure, leading to a flexural failure. The event's analysis, integrating technical data and observational insights, revealed that internal forces at the time of failure significantly exceeded the wall's capacity per standard design. The Lattice Discrete Particle Model (LDPM) further replicates the collapse mechanism. Our approach involved defining various parameter sets to replicate the concrete's mechanical response, consistent with the tested compressive strength. Subsequent stages included calibrating these parameters across different scales and conducting full-scale simulations. These simulations carried out with various parameter sets, were thoroughly analyzed to identify the most representative failure mechanism. We developed an equation from this analysis that quickly correlates the parameters to the wall's load-carry capacity, aligned with the simulation. Additionally, our study examined the wall's post-peak behavior, extending up to the point of collapse. This aspect of the analysis was essential for preventing failure, providing crucial time for intervention, and potentially averting a disaster. However, the reinforced concrete residual state is far from being fully understood. While it's impractical for engineers to depend on the residual state of structural elements during the design phase, comprehending this state is essential for effective response and mitigation strategies after initial failure occurs.

Effect of the type of resin cement on the fracture resistance of chairside CAD-CAM materials after aging

  • Laura Vitoria Rizzatto;Daniel Meneghetti;Marielle Di Domenico;Julia Cadorin Facenda;Katia Raquel Weber;Pedro Henrique Corazza;Marcia Borba
    • The Journal of Advanced Prosthodontics
    • /
    • 제15권3호
    • /
    • pp.136-144
    • /
    • 2023
  • PURPOSE. The study objective was to evaluate the influence of the type of resin cement on the flexural strength and load to fracture of two chairside CADCAM materials after aging. MATERIALS AND METHODS. A polymer-infiltrated ceramic network (PICN) and a nanoceramic resin (RNC) were used to produce the specimens. Two types of dual-cure resin cements, a self-adhesive and a universal, were investigated. Bilayer specimens were produced (n = 10) and aged for 6 months in a humid environment before the biaxial flexural strength test (σf). Bonded specimens were subjected to a mechanical aging protocol (50 N, 2 Hz, 37℃ water, 500,000 cycles) before the compressive load test (Lf). σf and Lf data were analyzed using two-way ANOVA and Tukey tests (α = .05). Chi-square test was used to analyze the relationship between failure mode and experimental group (α = .05). RESULTS. The type of resin cement and the interaction between factors had no effect on the σf and Lf of the specimens, while the type of restorative material was significant. RNC had higher σf and Lf than PICN. There was a significant association among the type of cracks identified for specimens tested in Lf and the restorative material. CONCLUSION. The type of resin cement had no effect on the flexural strength and load to fracture of the two investigated CAD-CAM chairside materials after aging.

인발성형 중공단면 복합소재 교량 바닥판의 구조적 특성 분석 (Structural Characteristics of Pultruded Composite Bridge Deck of Hollow Section)

  • 이성우;김병석;조남훈
    • 대한토목학회논문집
    • /
    • 제26권1A호
    • /
    • pp.35-43
    • /
    • 2006
  • 본 논문에서는 중공단면 형상의 유리섬유 강화 복합소재 교량바닥판의 개발에 관련된 연구 절차와 결과를 기술하였다. 설계된 3셀 단면에 대해 적층설계를 수행하였고, DB24 하중에 대한 플레이트 거더 복합소재 바닥판 교량의 유한요소해석을 통하여 처짐 사용성, 강도, 파괴 및 좌굴안정성 등의 구조적 특성을 평가하였다. 설계, 해석된 복합소재 바닥판 튜브는 인발성형으로 제작하였고, 구조적인 거동을 실험적으로 평가하기 위해 3점 휨시험, 거더 연결부시험, 방호벽 연결부시험을 실시하였고, DB24하중의 200만회 반복하중에 대해 압축피로시험, 휨피로시험 등 광범위한 구조성능시험을 실시하였다. 또한 시범시공된 복합소재 바닥판 플레이트 거더교량에 대한 현장 재하시험에서도 구조 안전성 및 사용성을 검토 하였다.