• Title/Summary/Keyword: flexural deflection

Search Result 493, Processing Time 0.033 seconds

Full-scale testing on the flexural behavior of an innovative dovetail UHPC joint of composite bridges

  • Qi, Jianan;Cheng, Zhao;Wang, Jingquan;Zhu, Yutong;Li, Wenchao
    • Structural Engineering and Mechanics
    • /
    • v.75 no.1
    • /
    • pp.49-57
    • /
    • 2020
  • This paper presents a full-scale experimental test to investigate the flexural behavior of an innovative dovetail ultra-high performance concrete (UHPC) joint designed for the 5th Nanjing Yangtze River Bridge. The test specimen had a dimension of 3600 × 1600 × 170 mm, in accordance with the real bridge. The failure mode, crack pattern and structural response were presented. The ductility and stiffness degradation of the tested specimens were explicitly discussed. Test results indicated that different from conventional reinforced concrete slabs, well-distributed cracks with small spacing were observed for UHPC joint slabs at failure. The average nominal flexural cracking strength of the test specimens was 7.7 MPa, signifying good crack resistance of the proposed dovetail UHPC joint. It is recommended that high grade reinforcement be cooperatively used to take full advantage of the superior mechanical property of UHPC. A new ductility index, expressed by dividing the ultimate deflection by flexural cracking deflection, was introduced to evaluate the post-cracking ductility capacity. Finally, a strut-and-tie (STM) model was developed to predict the ultimate strength of the proposed UHPC joint.

An Experimental Study to Evaluate the Flexural Performance of Steel Fiber-Reinforced Self-Compacting Concrete (강섬유를 보강한 자기충전 콘크리트의 휨 성능 평가를 위한 실험 연구)

  • Park, Yon-Dong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.6 s.58
    • /
    • pp.166-175
    • /
    • 2009
  • An experimental study was carried out to estimate the flexural performance of steel fiberreinforced self-compacting concrete. Seven slabs with three different steel fiber-reinforced concretes were prepared to make beam specimens. After proper curing period, each slab was cut to five beams with a diamond saw. The beam specimen was tested with displacement control method to obtain load-deflection curve. As the results, the self-compacting concrete beam showed higher flexural strength, ductility and toughness index compared to the normal concrete beam. This means that steel fiber-reinforced self-compacting concrete can be used more widely in the field of architecture and civil engineering because of its self-compactability and good mechanical properties.

An Experimental Study on Flexural Performance of RC Beams Reinforced With Hybrid Prefabricated Retrofit Method (하이브리드 조립형 보강 기법을 적용한 철근콘크리트 보의 휨 성능 평가에 관한 실험적 연구)

  • Moon, Sang Pil;Lee, Sung Ho;Lee, Young Hak;Kim, Min Sook
    • Journal of Korean Association for Spatial Structures
    • /
    • v.20 no.4
    • /
    • pp.131-139
    • /
    • 2020
  • In this paper, the hybrid prefabricated retrofit method is suggested and examined. Six specimens were manufactured in order to evaluate their flexural performance of RC beams. Test parameters include the added beam depth, the thickness of bottom plate, the number of the steel plate with openings. The effects of these parameters on the flexural performance of reinforced concrete beams were examined. The load-deflection behavior and modes of cracks are presented from the test results. At the test result, the flexural capacity and the ductility of the hybrid prefabricated retrofit method was increased satbly. Also, comparing the flexural performance of RC beam and retrofitted RC beams, it was increased that the flexural strength is about 3.3 times, the ductility is about 2.55 times, and energy dissipation capacity is about 7.34 times.

Research on flexural bearing capacity of cold-formed thin-walled steel and reinforced concrete sandwich composite slabs

  • Qiao, Wentao;Huang, Zhiyuan;Yan, Xiaoshuo;Wang, Dong;Meng, Lijun
    • Steel and Composite Structures
    • /
    • v.45 no.2
    • /
    • pp.219-230
    • /
    • 2022
  • The aim of this paper is to study the mechanical behaviors of the cold-formed thin-walled steel and reinforced concrete sandwich composite slab (CTS&RC-SCS) under vertical loads and to develop the calculation methods of its flexural bearing capacity and section stiffness. Two CTS&RC-SCS specimens were designed and manufactured to carry out the static loading test, and meanwhile, the numerical simulation analyses based on finite element method were implemented. The comparison between experimental results and numerical analysis results shows that the CTS&RC-SCS has good flexural capacity and ductility, and the accuracy and rationality of the numerical simulation analysis are verified. Further, the variable parameter analysis results indicate that neither increasing the concrete strength grade nor increasing the thickness of C-sections can significantly improve the flexural capacity of CTS&RC-SCS. With the increase of the ratio of longitudinal bars and the thickness of the composite slab, the flexural capacity of CTS&RC-SCS will be significantly increased. On the basis of experimental research and numerical analysis above, the calculation formula of the flexural capacity of CTS&RC-SCS was deduced according to the plastic section design theory, and section stiffness calculation formula was proposed according to the theory of transformed section. In terms of the ultimate flexural capacity and mid-span deflection, the calculated values based on the formulas and the experimental values are in good agreement.

Flexural Behavior of External Prestressed H-Beam (외부 긴장된 H형 보의 휨거동 특성)

  • Yang, Dong Suk;Lim, Sang Hun;Park, Sun Kyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.1
    • /
    • pp.79-85
    • /
    • 2002
  • Recently, prestressed H-Beam bridges with external unbonded Tendons are increasingly built. The mechanical behavior of prestressed steel H-beams is different from that of normal bonded PSC beams in a point of the slip of tendons at deviators and the change of tendon eccentricity that occurs, when service load are applied in external unbonded steel H-beams. The concept of prestressing steel structures has been widely considered, in spite of long and successful history of prestressing concrete members. In the study, The flexural test on prestressed steel H-beams has been performed in the various aspects of prestressed H-beam including the tendon type and profile. The load was plotted against the deflection and the strain respectively in the steel beam and prestressing bars. The value expected with the equation of internal force equilibrium and compatibility between the deflection of the bars and the H-beam was found to correlate well with the measured data.

Long-term Flexural Behavior of RC Beams Strengthened in Flexure with NSM Fe-SMA Strips (표면매립된 철계-형상기억합금 스트립으로 휨 보강된 RC보의 장기 휨거동)

  • Hong, Ki-Nam;Lee, Sugyu;Han, Sang-Hoon;Kang, Panseung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.3
    • /
    • pp.103-110
    • /
    • 2018
  • The long-term flexural behavior of reinforced concrete (RC) beams strengthened with an iron based-shape memory alloys (Fe-SMAs) by a near-surface mounted (NSM) method was evaluated. The pre-strained values of 2% and 4% and introduced prestressing force by an activation of a shape memory effect of the Fe-SMA strengthening material were considered as experimental variables. Deflections at the center of the RC beams were measured for six months after the 1 tonf concrete weight was loaded on the beam. Experimental results show that the deflections decreased because of the increased flexural stiffness of beams strengthened with the Fe-SMA strips. On the contrary, with increased pre-strained values, the deflection increased due to stiffness reduction of the strengthening material. It was confirmed that the specimens incorporating the prestressed force showed the deflection reduction of about 30%, compared to the ones without the prestressed force.

Three dimensional analysis of reinforced concrete frames considering the cracking effect and geometric nonlinearity

  • Kara, Ilker Fatih;Dundar, Cengiz
    • Structural Engineering and Mechanics
    • /
    • v.31 no.2
    • /
    • pp.163-180
    • /
    • 2009
  • In the design of tall reinforced concrete (R/C) buildings, the serviceability stiffness criteria in terms of maximum lateral displacement and inter-story drift must be satisfied to prevent large second-order P-delta effects. To accurately assess the lateral deflection and stiffness of tall R/C structures, cracked members in these structures need to be identified and their effective member flexural stiffness determined. In addition, the implementation of the geometric nonlinearity in the analysis can be significant for an accurate prediction of lateral deflection of the structure, particularly in the case of tall R/C building under lateral loading. It can therefore be important to consider the cracking effect together with the geometric nonlinearity in the analysis in order to obtain more accurate results. In the present study, a computer program based on the iterative procedure has been developed for the three dimensional analysis of reinforced concrete frames with cracked beam and column elements. Probability-based effective stiffness model is used for the effective flexural stiffness of a cracked member. In the analysis, the geometric nonlinearity due to the interaction of axial force and bending moment and the displacements of joints are also taken into account. The analytical procedure has been demonstrated through the application of R/C frame examples in which its accuracy and efficiency in comparison with experimental and other analytical results are verified. The effectiveness of the analytical procedure is also illustrated through a practical four story R/C frame example. The iterative procedure provides equally good and consistent prediction of lateral deflection and effective flexural member stiffness. The proposed analytical procedure is efficient from the viewpoints of computational effort and convergence rate.

Analysis of Nonlinear Behavior and Reliability of PSSC Composite Girder Bridge (PSSC 합성거더 교량의 비선형 거동 분석 및 신뢰도 해석)

  • Hwang, Chul-Sung;Paik, In-Yeol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.1
    • /
    • pp.158-166
    • /
    • 2008
  • Member force, strain and stress distribution of a section are obtained for prestressed steel and concrete(PSSC) composite bridge subjected to dead and live load in order to interpret the effect of prestressing and deformation of tendon. The stress and strain distribution and moment capacity are obtained for both noncomposite and composite section and for allowable stress limit state, yield limit state and strength limit state. Reliability analysis is conducted after assuming limit states for deflection, stress and flexural strength. Comparing that the reliability index for stress is near 0 for example section which is designed to satisfy the allowable stress exactly, the reliability indexes for deflection and flexural strength are high. Reliability of PSSC girder which is designed based on allowable stress of bridge design code is high for deflection and flexural strength.

A Study on the Large Deflection Behavior of Ship Plate with Secondary Buckling (2차좌굴을 포함하는 선체판의 대변형거동에 관한 연구)

  • 고재용
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.4
    • /
    • pp.565-573
    • /
    • 1999
  • Hihg Tensile Steel enables to reduce the plate thickness comparing to the case when Mild Steel is used. From the economical view points this is very preferable since the reduction in the hull weight. however to use the High Tensile Steel effectively the plate thickness may become thin so that the occurrence of buckling is inevitable and design allowing plate buckling may be necessary. If the inplane stiffness of the plating decreases due to buckling the flexural rigidity of the cross sect6ion of a ship's hull also decreases. This may lead to excessive deflection of the hull girder under longitudinal bending. In these cases a precise estimation of plate's behavior after buckling is necessary and nonliner analysis of isolated and stiffened plates is required for structural sys-tem analysis. In this connection this paper discusses nonlinear behaviour of thin plate under thrust. Based on the analytical method elastic large deflection analysis of isolated plate is perform and simple expression are derived to evaluated the inplane rigidity of plates subjected to uniaxial compression.

  • PDF

Long-term Deflection Analysis of Simply Supported PC Beams Considering Steel Effects (PC 단순보의 강재영향을 고려한 장기처짐해석)

  • 이대우;박영식;이재훈;신영식
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.04a
    • /
    • pp.245-250
    • /
    • 1995
  • Steel effects on creep deformation of prestressed concrete structues are investigated by a parametric study. Prestressed steel ratio, Prestressed steel distribution, initial flexural stress gradient, and modular ratio are selected as parameters. Sectional analysis for the beam section of parameter combination is performed to find curvatrue change due to creep. Based on the investigation, long-term curvature formulas from regression analysis are proposed. Application of the furmulas to simply supported prostressed concrete beam shows the effect of steel on deflection.

  • PDF