• Title/Summary/Keyword: flexural cracks

Search Result 239, Processing Time 0.026 seconds

Full-scale testing on the flexural behavior of an innovative dovetail UHPC joint of composite bridges

  • Qi, Jianan;Cheng, Zhao;Wang, Jingquan;Zhu, Yutong;Li, Wenchao
    • Structural Engineering and Mechanics
    • /
    • v.75 no.1
    • /
    • pp.49-57
    • /
    • 2020
  • This paper presents a full-scale experimental test to investigate the flexural behavior of an innovative dovetail ultra-high performance concrete (UHPC) joint designed for the 5th Nanjing Yangtze River Bridge. The test specimen had a dimension of 3600 × 1600 × 170 mm, in accordance with the real bridge. The failure mode, crack pattern and structural response were presented. The ductility and stiffness degradation of the tested specimens were explicitly discussed. Test results indicated that different from conventional reinforced concrete slabs, well-distributed cracks with small spacing were observed for UHPC joint slabs at failure. The average nominal flexural cracking strength of the test specimens was 7.7 MPa, signifying good crack resistance of the proposed dovetail UHPC joint. It is recommended that high grade reinforcement be cooperatively used to take full advantage of the superior mechanical property of UHPC. A new ductility index, expressed by dividing the ultimate deflection by flexural cracking deflection, was introduced to evaluate the post-cracking ductility capacity. Finally, a strut-and-tie (STM) model was developed to predict the ultimate strength of the proposed UHPC joint.

Loading capacity of simply supported composite slim beam with deep deck

  • Shi, Yongjiu;Yang, Lu;Wang, Yuanqing;Li, Qiuzhe
    • Steel and Composite Structures
    • /
    • v.9 no.4
    • /
    • pp.349-366
    • /
    • 2009
  • The composite slim beam has become popular throughout Europe in recent years and has also been used on some projects in China. With its steel section encased in a concrete slab, the steel-concrete composite slim beam can provide the floor construction with minimum depth and high fire resistance. However, the design method of the T-shape steel-concrete composite beam is no longer applicable to the composite slim beam with deep deck for its special construction, of which the present design models are not available but mainly depend on experiences. The elevation of the flexural stiffness and bending capacity of composite slim beams with deep deck is rather complicated, because the influences of many factors should be taken into account, such as the variable section dimensions, development of cracks and non-linear characteristics of concrete, etc. In this paper, experimental investigations have been conducted into the flexural behavior of two specimens of simply supported composite slim beam with deep deck. The emphases were laid on the bonding force on the interface between steel beam and concrete, the stress distribution of beam section, the flexural stiffness and bending capacity of the composite beams. Based on the experimental results, the reduction factor of equivalent stress distribution in concrete flange is suggested, and the calculation method of flexural stiffness and bending capacity of simply supported slim beams are proposed.

High Ductile Fiber Reinforced Concrete with Micro Fibers (마이크로 섬유를 혼입한 고인성 섬유 보강 콘크리트)

  • Shin, Kyung-Joon;Lee, Seong-Cheol;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.2
    • /
    • pp.92-98
    • /
    • 2019
  • In general, high strength and high performance fiber reinforced cement composites exclude coarse aggregates basically in order to have homogeneous distributions of material properties. However, these fiber-reinforced cement mortar without coarse aggregate have a tenancy that the modulus of elasticity is low and the unit weight of cement is high, resulting in low economic efficiency. Therefore, in this study, the development of high ductile fiber - reinforced concrete was conducted, which has the adequate level of coarse aggregate but still retains the high flexural toughness and strength and also has the crack - distributing performance. Experimental study was carried out by using the amount of coarse aggregate as an experimental parameter. The results showed that the best flexural toughness and crack dispersion characteristics was obtained when the coarse aggregate was added at 25% by weight of the fine aggregate to the typical mixtures of high ductile cement mortar. PVA fiber was effective in crack distribution and ductility enhancement, and steel fiber was effective in strengthening flexural strength rather than crack distribution.

Fresh, flexural and mechanical performance of polyamide and polypropylene based macro-synthetic fiber-reinforced concretes

  • Koksal, Fuat;Bacanli, Cem;Benli, Ahmet;Gencel, Osman
    • Structural Engineering and Mechanics
    • /
    • v.82 no.1
    • /
    • pp.93-105
    • /
    • 2022
  • The brittleness of concrete can be overcome by fiber reinforcement that controls the crack mechanisms of concrete. Corrosion-related durability issues can be prevented by synthetic fibers (SFs), while macro synthetic fibers have proven to be particularly effective to provide ductility and toughness after cracks. This experimental study has been performed to investigate the comparative flexural and mechanical behavior of four different macro-synthetic fiber-reinforced concretes (SFRCs). Two polyamide fibers (SF1 and SF2) with different aspect ratios and two different polypropylene fiber types (SF3 and SF4) were used in production of SFRCs. Four different SFRCs and reference concrete were compared for their influences on the toughness, compressive strength, elastic modulus, flexural strength, residual strength and splitting tensile strength. The outcomes of the study reveal that the flowability of reference mixture decreases after addition of SFs and the air voids of all SFRC mixtures increased with the addition of macro-synthetic fibers except SFRC2 mixture whose air content is the same as the reference mixture. The results also revealed that with the inclusion of SFs, 11.34% reduction in the cube compressive strength was noted for SFRC4 based on that of reference specimens and both reference concrete and SFRC exhibited nearly similar cylindrical compressive strength. Results illustrated that SFRC1 and SFRC4 mixtures consistently provide the highest and lowest flexural toughness values of 36.4 joule and 27.7 joule respectively. The toughness values of SFRC3 and SFRC4 are very near to each other.

Correlation Between Flexural Toughness and Cracking Characteristics of Micro-fiber Reinforced Mortar According to Fiber Contents (마이크로 섬유보강 모르타르의 휨 인성과 균열 특성의 상관관계)

  • Shin, Kyung-Joon;Jang, Kyu-Hyou;Kim, Eui Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2A
    • /
    • pp.249-257
    • /
    • 2008
  • Various methods have been used to reinforce the cementitious material such as mortar and concrete that have weak tensile strength. Major reinforcing method is to mix matrix with fibers which have strong tensile strength. Recently, micro-fiber reinforced mortar has been studied which removes coarse aggregate and uses micro-fiber with small diameter in order to homogenize the matrix properties and maximize the performance of fiber. Performance of micro-fiber reinforced mortar showing multiple cracking behavior is hardly represented only by the flexural toughness. Therefore, This paper reports the cracking behavior as well as mechanical behavior for various mixtures which have different fiber type and mixture proportions to find the proper parameter representing the cracking characteristic. Correlations between flexural toughness and various cracking characteristics such as cracking area, width and number are explored. As a result, it is found that flexural toughness, volume of fiber and number of cracks are suitable for representing the characteristics of micro-fiber reinforced mortar.

Self-diagnosis property of strengthened concrete by rib of hybrid FRP and carbon fiber sheet (하이브리드FRP 탄소계 리브 및 탄소섬유시트 보강 콘크리트의 자가진단 기능 검토)

  • Park, Seok-Kyun;Kim, Dae-Hoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.358-361
    • /
    • 2006
  • For giving self-diagnosing capability, a method based on monitoring the changes in the electrical resistance of carbon materials in strengthened concrete has been tested. Then after examining change in the value of electrical resistance of carbon materials used as a rib of CFGFRP or a sheet of carbon fiber before and after the occurrence of cracks and fracture in hybrid FRP or carbon fiber sheet strengthened concrete at each flexural weight-stage, the correlations of each factors were analyzed.

  • PDF

Proposed Detailing of Reinforcement to Enhance the Structural Performance in Two-way Slab System (이방향 슬래브의 구조성능 향상을 위한 배근상세의 제안)

  • ;Denis Mitchell
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04a
    • /
    • pp.379-384
    • /
    • 1998
  • To overcome the common deficiencies found in such two-way slabs, such as excessive cracking around columns, excessive deflections and low punching shear strength, it was proposed to investigate the strategic reinforcing steel distribution detailings. Concentration of the top mat of flexural reinforcement result in a higher punching shear resistance, higher post cracking stiffness, a more uniform distribution of strains in the top bars and smaller cracks at all levels of loading.

  • PDF

Flexural Behavior of High-strength Concrete Beams of 90 MPa According to Curing Temperature (양생온도에 따른 90 MPa 수준의 고강도 철근 콘크리트 보의 휨거동)

  • Hwang, Chul-Sung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.5
    • /
    • pp.134-140
    • /
    • 2017
  • In this study, the flexural behavior of high strength concrete members with different curing condition of 90 MPa of compressive strength was investigated. Experimental parameters included normal and low temperature curing conditions, tensile steel amount and concrete compressive strength. 8 beam members were fabricated and flexural tests were carried out. Crack spacing, load-deflection relation, load-strain relation and ductility index were determined. Experimental results show that as the amount of rebar increases, the number of cracks increases and the crack spacing decreases. The higher the concrete strength, the smaller the number of cracks, but the effect is significantly smaller than the amount of rebar. As a result of comparison with the proposed average crack spacing in the design criteria, the experimental results are slightly larger than the results of the proposed formula, but the proposed formula does not reflect the concrete strength and curing conditions. The ductility index of normal temperature cured members was 3.36~6.74 and the ductility index of low temperature cured members was 1.51~2.82. The behavior of low temperature cured members was found to be lower than that of normal temperature cured members. As a result of comparing the ductility index with the existing studies similar to the experimental members, the ductility index of the high strength concrete member was larger than the ductility index of the ordinary strength concrete of the previous study. Further research is needed to understand more specific results.

The Strain of Transverse Steel and Concrete Shear Resistance Degradation after Yielding of Reinforced Concrete Circular Pier (철근콘크리트 원형 교각의 횡방향철근 변형률과 항복이후 콘크리트 전단저항 저감)

  • Ko, Seong Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.1
    • /
    • pp.147-157
    • /
    • 2018
  • The basis of capacity design has been explicitly or implicitly regulated in most bridge design specifications. It is to guarantee ductile failure of entire bridge system by preventing brittle failure of pier members and any other structural members until the columns provides fully enough plastic rotation capacity. Brittle shear is regarded as a mode of failure that should be avoided in reinforced concrete bridge pier design. To provide ductility behavior of column, the one of important factors is that flexural hinge of column must be detailed to ensure adequate and dependable shear strength and deformation capacity. Eight small scale circular reinforced concrete columns were tested under cyclic lateral load with 4.5 aspect ratio. The test variables are longitudinal steel ratio, transverse steel ratio, and axial load ratio. Eight flexurally dominated columns were tested. In all specimens, initial flexural-shear cracks occurred at 1.5% drift ratio. The multiple flexural-shear crack width and length gradually increased until the final stage. The angles of the major inclined cracks measured from the vertical column axis ranged between 42 and 48 degrees. In particular, this study focused on assessing transverse reinforcement contribution to the column shear strength. Transverse reinforcement contribution measured during test. Each three components of transverse reinforcement contribution, axial force contribution and concrete contribution were investigated and compared. It was assessed that the concrete stresses of all specimen were larger than stress limit of Korea Bridge Design Specifications.

Influence of Water Infiltration and Flexural Strength Change with Glazing Treatment of Dental Porcelain (치과도재의 Glazing 여부에 따른 수분침투 정도와 굽힘강도에 미치는 영향)

  • Lee, Ju-Hee;Lee, Chae-Hyun;Song, Jeong-Hwan
    • Journal of dental hygiene science
    • /
    • v.17 no.4
    • /
    • pp.358-367
    • /
    • 2017
  • The purpose of this study was to evaluate the influence of water infiltration and flexural strength changes in dental porcelain with glazing treatment. The block specimens were prepared as experimental materials, using feldspar type commercial dental porcelain; then, these were fired at $940^{\circ}C$ for 1 minute. The fired specimens were polished with a dimension of $40{\times}5.5{\times}5mm$. The specimens were distributed to two experimental groups: with and without glazing treatment specimens (n=5), and they were immersed in a solution of pH 7 for 3, 7, and 20 days at $40^{\circ}C$ after fabrication. To evaluate the flexural strength changes with water infiltration treatment in specimens with and without glazing, the 3-point flexural test was performed, using a universal testing machine until failure occurred. Starting powder and fired specimens consisted of amorphous and leucite crystalline phase. The Vickers hardness of fired specimens was more than 1.6 times higher than that of the enamel of natural teeth. According to porosimeter results, the specimens without glazing treatment exhibited a porosity of about 14.7%, whereas the glazed specimens exhibited the lowest porosity at about 1.1%. The average flexural strength of glazed specimens was higher than the flexural strength of specimens without glazing treatment (p<0.05). The flexural strength of all specimens with and without glazing treatment deteriorated with accelerated aging in the solution. In addition, significant differences between these two treatment groups were observed in all of the specimens treated at various water infiltration periods (p<0.05). The exposure of internal pores and micro-cracks in the surface due to polishing of the fired specimens influenced mechanical behaviors. Especially, the flexural strength in specimens without glazing treatment has shown significant degradation with the infiltration of water. Therefore, this study suggests that glazing processes can improve mechanical properties of dental porcelain.