• Title/Summary/Keyword: flexural bond strength

Search Result 251, Processing Time 0.024 seconds

Durability of Ultrarapid-Hardening Polymer-Modified Concretes Using Metakaolin (메타카올린을 혼입한 초속경 폴리머 시멘트 콘크리트의 내구특성)

  • Yoo, Tae-Ho;Chang, Byung-Ha;Hong, Hyun-Pyo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.5
    • /
    • pp.31-38
    • /
    • 2018
  • The effects of polymer-binder ratio and metakaolin content on the properties of ultrarapid-hardening polymer-modified concretes using metakaolin are examined. As a result, regardless of the metakaolin content, the flexural, compressive and adhesion in tension strength of the ultrarapid-hardening polymer-modified concretes tend to increase with increasing polymer-binder ratio. Regardless of the polymer-binder ratio, the strengths of the ultrarapid-hardening polymer-modified concretes increase with increasing metakaolin content, and reaches a maximum at metakaolin content of 5%. The water absorption, carbonation depth and resistance of chloride ion penetration of the ultrarapid-hardening polymer-modified concretes decrease with increasing polymer-binder ratio. The resistance of freezing and thawing improvement is attributed to the improved bond between cement hydrates and aggregates because of the incorporation of polymer dispersion.

Behavior of GFRP reinforced decks with various reinforcement ratio (GFRP 보강근으로 보강된 바닥판의 보강비에 따른 거동 실험)

  • You, Young-Jun;Park, Ji-Sun;Park, Young-Hwan;Kim, Hyeong-Yeol;Kim, Keung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.49-52
    • /
    • 2008
  • The tensile and bond performance of GFRP rebar are different from those of conventional steel reinforcement. It requires some studies on concrete members reinforced with GFRP reinforcing bars to apply it to concrete structures. GFRP has some advantages such as high specific strength, low weight, non-corrosive nature, and disadvantage of larger deflection due to the lower modulus of elasticity than that of steel. Bridge deck is a preferred structure to apply FRP rebars due to the increase of flexural capacity by arching action. This paper focuses on the behavior of concrete bridge deck reinforced with newly developed GFRP rebar. A total of three real size bridge deck specimens were made and tested. Main variable was reinforcement ratio of GFRP rebar. Static test was performed with the load of DB-24 level until failure. Test results were compared and analyzed with ultimate load, deflection behavior.

  • PDF

Experimental Study on Deflection Evaluation of KCI specification and Eurocode 2 (콘크리트 구조 설계기준과 Eurocode 2의 처짐 산정에 관한 실험적 고찰)

  • Lee, In-Ju;Kim, Tae-Wan;Oh, Seok-Mim;Kim, Jun-Won;Park, Sun-Kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.141-144
    • /
    • 2008
  • Deflection in terms of serviceability of reinforced concrete structures is considered as one of significant factor. Domestic concrete specification offers a procedure to evaluate deflection using effective moment of inertia at cracked section, which has been known as Branson's equation in ACI. Branson's equation was derived from statistical analysis of maximum deflection of flexural members, but is somewhat weak in no reflection of bond characteristics between reinforced bars and concrete, such as tension stiffening effect. Therefore, present code creates difference from actual deflection. In this study, experiments about deflection of RC beams was completed to compare domestic standard and Eurocode 2, which calculates deflection considering tension stiffening effect. Four RC beams were built and tested, and initial modulus of elasticity and tensile strength of concrete used in the test was calculated by each design standard.

  • PDF

Service and Ultimate Load Behavior of Bridge Deck Reinforced with GFRP Rebars (GFRP 보강근으로 보강된 교량 바닥판의 성능과 사용성에 관한 실험연구)

  • Yu, Young Jun;Park, Young Hwan;Park, Ji Sun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5A
    • /
    • pp.719-727
    • /
    • 2008
  • The tensile and bond performance of GFRP rebar are different from those of conventional steel reinforcement. It requires some studies on concrete members reinforced with GFRP reinforcing bars to apply it to concrete structures. GFRP has some advantages such as high specific strength, low weight, non-corrosive nature, and disadvantage of larger deflection due to the lower modulus of elasticity than that of steel. Bridge deck is a preferred structure to apply FRP rebars due to the increase of flexural capacity by arching action. This paper focuses on the behavior of concrete bridge deck reinforced with newly developed GFRP rebars. A total of three real size bridge deck specimens were made and tested. Main variables are the type of reinforcing bar and reinforcement ratio. Static test was performed with the load of DB-24 level until failure. Test results were compared and analyzed with ultimate load, deflection behavior, crack pattern and width.

Durability of Latex-Modified Concrete with Rapid-Setting Cement (초속경시멘트를 이용한 라텍스개질 콘크리트의 내구특성)

  • Yun, Kyong-Ku;Jung, Won-Kyong;Choi, Sang-Reung;Kim, Dong-Ho;Lee, Bong-Hak
    • International Journal of Highway Engineering
    • /
    • v.4 no.2 s.12
    • /
    • pp.1-8
    • /
    • 2002
  • Latex modified concrete(LMC) became to be applied as a new material for newly constructed bridge deck overlays in Korea due to its excellent bond strength, flexural strength and impermeability against water and chloride. However, it could not be adopted at repair job site because of its long curing time required. Thus, a research on latex modified concrete with rapid-setting cement(RSLMC) is necessary if it could develope the sufficient strength for early opening to traffic. This study focused on the durability of latex modified concrete with rapid-setting cement mainly on water permeable resistance and freeze-thaw resistance. The main experimental variables were latex contents(0, 5, 10, 15 and 20%) and antifoamer contents (0, 1.6, 3.2, 4.8 and 6.4%). Test results show that the permeability of RSLMC is very low indicating below 100 coulombs at 15% of latex contents at all antifoamer contents. The freeze-thaw resistance of RSLMC maintains above 90% of relative dynamic modulus at 3.2% of antifoamer content until 300 freezing-thawing cycles.

  • PDF

Flexural Reinforcement of Timber Beams Using Carbon Fiber Plates (탄소섬유판을 사용한 목재 보의 휨보강)

  • Choi, Jin-Chul;Kim, Seung-Hun;Lee, Yong-Taeg
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.238-246
    • /
    • 2022
  • This paper summarizes the development and evaluation of the reinforcement details of CFRP plates to improve the bending performance of wooden beams. In this study, the reinforcing technology using high-strength bolts for the end of beam were developed as reinforcement details for reinforcing wooden beams with CFRP plates by EBM method. In order to evaluate the bending performance, a bending test was conducted for the specimens with details of reinforcement such as the EBM method and the NSM method. From the experimental results, the EBM specimens without end restraints had both the CFRP plate attachment failure and the splitting failure of the wood. In the load-displacement curve, the non-reinforced specimens exhibited linear elastic behavior and then brittle fracture after the maximum load. The maximum load of the specimens reinforced by the EBM method increased by 31.5~63.0% compared to the non-reinforced specimens, and the maximum load according to the end restraints of the high-strength bolts increased by 24.0%. Based on the reinforcement amount of the same CFRP plate, EBM reinforcement was 2.67 times larger in maximum load increase rate than NSM reinforcement.

Effect of Long-Term Load on Flexural Crack Widths in FRP-Reinforced Concrete Beams (장기하중이 FRP-보강근 콘크리트 보의 휨균열폭에 미치는 영향)

  • Choi, Bong-Seob
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.694-701
    • /
    • 2018
  • Larger crack widths can be observed more in FRP-reinforced concrete members than in steel-reinforced concrete members as a result of the lower elastic modulus and bond strength of FRP reinforcement. The ACI 440.1R-15 design guide provides equations derived as the maximum bar spacing to control the crack widths indirectly. On the other hand, it is not concerned with long-term effects on the crack control design provisions. This study provides suggestions for how to incorporate time-dependent effects into the crack width equation. The work presented herein includes the results from 8 beams composed of four rectangular and T-shaped FRP-reinforced concrete beams tested for one year under four-point bending. Over a one year period, the crack widths increased as much as 2.6~3.0 times in GFRP and AFRP-reinforced specimens and 1.1~1.4 times in the CFRP-reinforced specimens compared to steel-reinforced specimens. In addition, the average multiple for crack width at one year relative to the instantaneous crack width upon the application of the sustained load was 2.4 in the specimens with a rectangular section and 3.1 in the specimens with a T-shaped section. As a result, it is recommended conservatively that the time-dependent coefficient be taken as 2.5 for the rectangular beams and 3.5 for T-beams.

A Study for Shear Deterioration of Reinforced Concrete Beam-Column Joints Failing in Shear after Flexural Yielding of Adjacent Beams (보의 휨항복 후 접합부가 파괴하는 철근콘크리트 보-기둥 접합부의 전단내력 감소에 대한 해석적 연구)

  • Park, Jong-Wook;Yun, Seok-Gwang;Kim, Byoung-Il;Lee, Jung-Yoon
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.4
    • /
    • pp.399-406
    • /
    • 2012
  • Beam-column joints are generally recognized as the critical regions in the moment resisting reinforced concrete (RC) frames subjected to both lateral and vertical loads. As a result of severe lateral load such as seismic loading, the joint region is subjected to horizontal and vertical shear forces whose magnitudes are many times higher than in column and adjacent beam. Consequently, much larger bond and shear stresses are required to sustain these magnified forces. The critical deterioration of potential shear strength in the joint area should not occur until ductile capacity of adjacent beams reach the design demand. In this study, a method was provided to predict the deformability of reinforced concrete beam-column joints failing in shear after the plastic hinges developed at both ends of the adjacent beams. In order to verify the deformability estimated by the proposed method, an experimental study consisting of three joint specimens with varying tensile reinforcement ratios was carried out. The result between the observed and predicted behavior of the joints showed reasonably good agreement.

Fabrication and Mechanical Properties of Carbon Fiber Reinforced Polymer Composites with Functionalized Graphene Nanoplatelets (기능기화 된 그래핀 나노플레이틀릿이 첨가 된 탄소섬유 강화 고분자 복합소재의 제조 및 기계적 특성 연구)

  • Cha, Jaemin;Kim, Jun Hui;Ryu, Ho Jin;Hong, Soon H.
    • Composites Research
    • /
    • v.30 no.5
    • /
    • pp.316-322
    • /
    • 2017
  • Carbon fiber is a material with excellent mechanical, electrical and thermal properties, which is widely used as a composite material made of a polymer matrix. However, this composite material has a weak point of interlaminar delamination due to weak interfacial bond with polymer matrix compared with high strength and elasticity of carbon fiber. In order to solve this problem, it is essential to use reinforcements. Due to excellent mechanical properties, graphene have been expected to have large improvement in physical properties as a reinforcing material. However, the aggregation of graphene and the weak interfacial bonding have resulted in failure to properly implement reinforcement effect. In order to solve this problems, dispersibility will be improved. In this study, functionalization of graphene nanoplatelet was proceeded with melamine and mixed with epoxy polymer matrix. The carbon fiber reinforced polymer composites were fabricated using the prepared graphene nanoplatelet/epoxy and flexural properties and interlaminar shear strength were measured. As a result, it was confirmed that the dispersibility of graphene nanoplatelet was improved and the mechanical properties of the composite material were increased.

Application of In-Situ Mixing Hydration Accelerator on Polymer Modified Concrete for Bonded Concrete Overlay (접착식 콘크리트 덧씌우기를 위한 초속경화 첨가재 현장 혼합 폴리머 개질 콘크리트의 적용성 연구)

  • Kim, Young Kyu;Hong, Seong Jae;Lee, Seung Woo
    • International Journal of Highway Engineering
    • /
    • v.17 no.3
    • /
    • pp.85-95
    • /
    • 2015
  • PURPOSES : Recently, bonded concrete overlay has been used as an alternative solution in concrete pavement rehabilitation since its material properties are similar to those of the existing concrete pavements. Deteriorated concrete pavements need rapid rehabilitation in order to prevent traffic jams on Korean expressways. Moreover, speedy and effective repair methods are required. Therefore, the use of bonded concrete overlay with ultra-rapid hardening cement has increased in an effort to reopen promptly the expressways in Korea. However, mobile mixer is required for ultra-rapid hardening cement concrete mixing in the construction site. The use of mobile mixer causes various disadvantages aforementioned such as limitation of the construction supply, open-air storage of mixing materials, increase in construction cost, and etc. In this study, therefore, hydration accelerator in-situ mixing on polymer modified concrete produced in concrete plant is attempted in order to avoid the disadvantages of existing bonded concrete overlay method using ultra-rapid hardening cement. METHODS : Bonded concrete overlay materials using ultra-rapid hardening cement should be meet all the requirements including structural characteristics, compatibility, durability for field application. Therefore, This study aimed to evaluate the application of hydration accelerator in-situ mixing on polymer modified concrete by evaluating structural characteristics, compatibility, durability and economic efficiency for bonded concrete overlay. RESULTS : Test results of structural characteristics showed that the compressive, flexural strength and bond strength were exceed 21MPa, 3.15MPa and 1.4MPa, respectively, which are the target strengths of four hours age for the purpose of prompt traffic reopening. In addition, tests of compatibility, such as drying shrinkage, coefficient of thermal expansion and modulus of elasticity, and durability (chloride ions penetration resistance, freezing-thawing resistance, scaling resistance, abrasion resistance and crack resistance), showed that the hydration accelerator in-situ mixing on polymer modified concrete were satisfied the required criteria. CONCLUSIONS : It was known that the hydration accelerator in-situ mixing on polymer modified concrete overlay method was applicable for bonded concrete overlay and was a good alternative method to substitute the existing bonded concrete overlay method since structural characteristics, compatibility, durability were satisfied the criteria and its economic efficiency was excellent compare to the existing bonded concrete overlay methods.