• 제목/요약/키워드: flexible strain sensors

검색결과 27건 처리시간 0.027초

Recent Trends in Human Motion Detection Technology and Flexible/stretchable Physical Sensors: A Review

  • Park, Inkyu
    • 센서학회지
    • /
    • 제26권6호
    • /
    • pp.391-396
    • /
    • 2017
  • Human body motion detection is important in several industry sectors, such as entertainment, healthcare, rehabilitation, and so on. In this paper, we first discuss commercial human motion detection technologies (optical markers, MEMS acceleration sensors, infrared imaging, etc.) and then explain recent advances in the development of flexible and stretchable strain sensors for human motion detection. In particular, flexible and stretchable strain sensors that are fabricated using carbon nanotubes, silver nanowires, graphene, and other materials are reviewed.

Ag Electrode Strain Sensor Fabrication Using Laser Direct Writing Process

  • Kim, Hyeonseok;Shin, Jaeho;Hong, Sukjoon;Ko, Seung Hwan
    • 센서학회지
    • /
    • 제24권4호
    • /
    • pp.215-218
    • /
    • 2015
  • As several innovative technologies for flexible electric devices are being realized, demand for in-situ strain monitoring for flexible electric devices is being emphasized. Because flexible devices are commonly influenced by substrate strain, suitable strain sensors for flexible devices are essential for the sophisticated maneuvering of flexible devices. In this study, a flexible strain sensor based on an Ag electrode is prepared on a polyimide substrate using the LDW (laser direct writing) process. In this process, first, the Ag nanoparticles are coated on the substrate and selectively sintered using a focused laser. Because of the advantages of the LDW process (such as being mask-less, using low temperatures, and having non-vacuum characteristics), the entire fabrication process has been dramatically simplified; as a final outcome, a highly reliable strain sensor has been fabricated. Using this strain sensor, various strain conditions that arise from different bending radii can be detected by measuring real-time electrical signals.

구조적 형상 제어를 통한 인장에 내성을 가지는 전극 개발 (Development of electrodes with resistance to tension through structural shape control)

  • 양성진;홍성경;임근배
    • 센서학회지
    • /
    • 제30권3호
    • /
    • pp.181-184
    • /
    • 2021
  • Interest in healthcare and wearable devices has been increasing recently. A strain sensor is required in various wearable devices. With respect to such devices, studies on resistance changes in strain sensors using flexible materials are in progress. However, the resistance of the rest area in a strain sensor should not change according to the applied strain. So, an electrode with resistance to stretching, bending, and torsion is required in such strain sensors. Tension, bending, and torsion can be realized through structural shape control, rather than by using flexible materials. Further, such an electrode that maintains electrical properties has been developed and manufactured. This electrode can be used in various applications such as foldable devices, e-papers, batteries, and multifunctional wearable devices.

MPTMS Treated Au/PDMS Membrane for Flexible and Stretchable Strain Sensors

  • Yang, Seongjin;Lim, Hyun Jee;Jeon, Hyungkook;Hong, Seong Kyung;Shin, Jung Hwal
    • 센서학회지
    • /
    • 제25권4호
    • /
    • pp.247-251
    • /
    • 2016
  • Au/PDMS membranes are widely used to fabricate strain sensors which can detect input signals. An interfacial adhesion between metal films and polydimethylsiloxane (PDMS) substrates is one of the important factors determining the performance of strain sensors, in terms of robustness, reliability, and sensitivity. Here, we fabricate Au/PDMS membranes with (3-mercaptopropyl) trimethoxysilane (MPTMS) treatment. PDMS membranes were fabricated by spin-coating and the thickness was controlled by varying the spin rates. Au electrodes were deposited on the PDMS membrane by metal sputtering and the thickness was controlled by varying sputtering time. Owing to the MPTMS treatment, the interfacial adhesion between the Au electrode and the PDMS membrane was strengthened and the membrane was highly transparent. The Au electrode, fabricated with a sputtering time of 50 s, had the highest gauge factor at a maximum strain of ~0.7%, and the Au electrode fabricated with a sputtering time of 60 s had the maximum strain range among sputtering times of 50, 60, and 120 s. Our technique of using Au/PDMS with MPTMS treatment could be applied to the fabrication of strain sensors.

웨어러블 텍스타일 스트레인 센서 리뷰 (Wearable Textile Strain Sensors)

  • 노정심
    • 한국의류산업학회지
    • /
    • 제18권6호
    • /
    • pp.733-745
    • /
    • 2016
  • This paper provides a review of wearable textile strain sensors that can measure the deformation of the body surface according to the movements of the wearer. In previous studies, the requirements of textile strain sensors, materials and fabrication methods, as well as the principle of the strain sensing according to sensor structures were understood; furthermore, the factors that affect the sensing performance were critically reviewed and application studies were examined. Textile strain sensors should be able to show piezoresistive effects with consistent resistance-extension in response to the extensional deformations that are repeated when they are worn. Textile strain sensors with piezoresistivity are typically made using conductive yarn knit structures or carbon-based fillers or conducting polymer filler composite materials. For the accuracy and reliability of textile strain sensors, fabrication technologies that would minimize deformation hysteresis should be developed and processes to complement and analyze sensing results based on accurate understanding of the sensors' resistance-strain behavior are necessary. Since light-weighted, flexible, and highly elastic textile strain sensors can be worn by users without any inconvenience so that to enable the users to continuously collect data related to body movements, textile strain sensors are expected to become the core of human interface technologies with a wide range of applications in diverse areas.

기저판의 탄성에 따른 유연촉각센서의 성능변화 연구 (Study on the Performance of Flexible Tactile Sensors According to the Substrate Stiffness)

  • 김송호;김호찬;이인환
    • 한국기계가공학회지
    • /
    • 제20권9호
    • /
    • pp.104-109
    • /
    • 2021
  • Tactile sensors and integrated circuits that detect external stimuli have been developed for use in various industries. Most tactile sensors have been developed using the MEMS(micro electro-mechanical systems) process in which metal electrodes and strain sensors are applied to a silicon substrate. However, tactile sensors made of highly brittle silicon lack flexibility and are prone to damage by external forces. Flexible tactile sensors based on polydimethylsiloxane and using a multi-walled carbon nano-tube mixture as a pressure-sensitive material are currently being developed as an alternative to overcome these limitations. In this study, a manufacturing process of pressure-sensitive materials with low initial electrical resistance is developed and applied to the fabrication of flexible tactile sensors. In addition, flexible tactile sensors are developed with pressure-sensitive materials dispensed on a substrate with flexible mechanical properties. Finally, a study is conducted on the change in electrical resistance of pressure-sensitive materials according to the modulus of elasticity of the substrate.

강성도 국부 변환 신축성 기판 위에 제작된 박막 트랜지스터 기반 변형률 센서 (Thin-Film Transistor-Based Strain Sensors on Stiffness-Engineered Stretchable Substrates)

  • 조영민;류경인;정성준
    • 센서학회지
    • /
    • 제32권6호
    • /
    • pp.386-390
    • /
    • 2023
  • Stiffness-engineered stretchable substrate technology has been widely used to produce stretchable displays, transistors, and integrated circuits because it is compatible with various flexible electronics technologies. However, the stiffness-engineering technology has never been applied to transistor-based stretchable strain sensors. In this study, we developed thin-film transistor-based strain sensors on stiffness-engineered stretchable substrates. We designed and fabricated strain-sensitive stretchable resistors capable of inducing changes in drain currents of transistors when subjected to stretching forces. The resistors and source electrodes of the transistors were connected in series to integrate the developed stretchable resistors with thin-film transistors on stretchable substrates by printing the resistors after fabricating transistors. The thin-film transistor-based stretchable strain sensors demonstrate feasibility as strain sensors operating under strains of 0%-5%. This strain range can be extended with further investigations. The proposed stiffness-engineering approach will expand the potential for the advancement and manufacturing of innovative stretchable strain sensors.

풍력발전기 블레이드 변형 측정을 위한 액체금속 스트레인 게이지 개발 (Development of Liquid Metal Strain Gauge for Measuring WT Blade's Deformation)

  • 박인겸;서영호;김병희
    • 한국정밀공학회지
    • /
    • 제32권3호
    • /
    • pp.307-314
    • /
    • 2015
  • In this paper, the embedding type novel liquid metal strain gauge was developed for measuring the deformation of wind turbine blades. In general, the conventional methods for the SHM have many disadvantages such as frequency distortion in FBG sensors, the low gauge factor and mechanical failures in strain gauges and extremely sophisticated filtering in AE sensors. However, the liquid metal filled in a pre-confined micro channel shows dramatic characteristics such as high sensitivity, flexibility and robustnes! s to environment. To adopt such a high feasibility of the liquid metal in flexible sensor applications, the EGaIn was introduced to make flexible liquid metal strain gauges for the SHM. A micro channeled flexible film fabricated by the several MEMS processes and the PDMS replication was filled with EGaIn and wire-connected. Lots of experiments were conducted to investigate the performance of the developed strain gauges and verify the feasibility to the actual wind turbine blades health monitoring.

Low-Cost Flexible Strain Sensor Based on Thick CVD Graphene

  • Chen, Bailiang;Liu, Ying;Wang, Guishan;Cheng, Xianzhe;Liu, Guanjun;Qiu, Jing;Lv, Kehong
    • Nano
    • /
    • 제13권11호
    • /
    • pp.1850126.1-1850126.10
    • /
    • 2018
  • Flexible strain sensors, as the core member of the family of smart electronic devices, along with reasonable sensing range and sensitivity plus low cost, have rose a huge consumer market and also immense interests in fundamental studies and technological applications, especially in the field of biomimetic robots movement detection and human health condition monitoring. In this paper, we propose a new flexible strain sensor based on thick CVD graphene film and its low-cost fabrication strategy by using the commercial adhesive tape as flexible substrate. The tensile tests in a strain range of ~30% were implemented, and a gage factor of 30 was achieved under high strain condition. The optical microscopic observation with different strains showed the evolution of cracks in graphene film. Together with commonly used platelet overlap theory and percolation network theory for sensor resistance modeling, we established an overlap destructive resistance model to analyze the sensing mechanism of our devices, which fitted the experimental data very well. The finding of difference of fitting parameters in small and large strain ranges revealed the multiple stage feature of graphene crack evolution. The resistance fallback phenomenon due to the viscoelasticity of flexible substrate was analyzed. Our flexible strain sensor with low cost and simple fabrication process exhibits great potential for commercial applications.

Strain Transmission Characteristics of Packaged Fiber Bragg Grating Sensors for Structural Health Monitoring

  • Cho, Sung-In;Yoo, Seung-Jae;Kim, Eun-Ho;Lee, In;Kwon, Il-Bum;Yoon, Dong-Jin
    • 비파괴검사학회지
    • /
    • 제30권3호
    • /
    • pp.236-243
    • /
    • 2010
  • Fiber Bragg grating(FBG) sensor arrays can be used to monitor the mechanical behavior of the large composite structures such as wind turbine rotor blades and aircrafts. However, brittle FBG sensors, especially multiplexed FBG sensors are easily damaged when they are installed in the flexible structures. As a protection of brittle FBG sensors, epoxy packaged FBG sensors have been presented in this paper. Finite element analysis and experiments were performed to evaluate the effects of adhesives, packaging materials and the bonding layer thickness on the strain transmission. Two types of epoxy were used for packaging FBG sensors and the sensor probes were attached with various bonding layer thickness. It was observed that thin bonding layer with high elastic modulus ratio of the adhesive to packaging provided good strain transmission. However, the strain transmission was significantly decreased when elastic modulus of the adhesive was much lower than the packaged FBG sensor probe's one.