In this paper, we propose an efficient search algorithm for finding an optimal schedule to minimize makespan, while avoiding deadlock situation in Flexible Manufacturing Systems (FMS) with finite capacity, in which each job needs to be processed in several job stages for completion. The proposed algorithm uses a modeling and control method based on Petri-net. Especially, we improve the efficiency of the search algorithm by using a priority rule and an efficient bounding function during the search procedure. The performance of the proposed algorithm is evaluated through a numerical experiment, showing that it holds considerable promise for providing an optimal solution efficiently comparing to past work.
A ligand-receptor docking program is an indispensible tool in modern pharmaceutical design. An accurate prediction of small molecular docking pose to a receptor is essential in drug design as well as molecular recognition. An effective docking program requires the ability to locate a correct binding pose in a surprisingly complex conformational space. However, there is an inherent difficulty to predict correct binding pose. The odds are more demanding than finding a needle in a haystack. This mainly comes from the flexibility of both ligand and receptor. Because the searching space to consider is so vast, receptor rigidity has been often applied in docking programs. Even nowadays the receptor may not be considered to be fully flexible although there have been some progress in search algorithm. Improving the efficiency of searching algorithm is still in great demand to explore other applications areas with inherently flexible ligand and/or receptor. In addition to classical search algorithms such as molecular dynamics, Monte Carlo, genetic algorithm and simulated annealing, rather recent algorithms such as tabu search, stochastic tunneling, particle swarm optimizations were also found to be effective. A good search algorithm would require a good balance between exploration and exploitation. It would be a good strategy to combine algorithms already developed. This composite algorithms can be more effective than an individual search algorithms.
Scheduling problem in Flexible Manufacturing Systems(FMS) is complex because of various situation of Manufacturing Systems. Especially, in case of short-term scheduling demanding high efficiency, low cost at short-period, efficient scheduling is a serious problem. To solve this problem, many dispatching rules are developed. But, it leave much to be desired, because real situation in shop floor is complex and real-time scheduling is needed in real manufacturing shop floor. In this paper, search algorithm that allocate different dispatching rules to each machine is presented to complement lack of dispatching rule and develop practical real-time scheduling system. The search algorithm is described in detail. First, algorithm detect machine breakdown, evaluate each dispatching rule. dispatching rules for each machine meeting performance criteria are ranked. The algorithm selects new dispatching nile for bottleneck machine. The effectivenes and efficiency of the mixed dispatching rule and search algorithm is demonstrated.
In this paper, we utilize training strategy of hidden Markov model (HMM) to use in versatile issues such as classification of time-series sequential data such as electric transient disturbance problem in power system. For this, an automatic means of optimizing HMMs would be highly desirable, but it raises important issues: model interpretation and complexity control. With this in mind, we explore the possibility of using genetic algorithm (GA) and harmony search (HS) algorithm for optimizing the HMM. GA is flexible to allow incorporating other methods, such as Baum-Welch, within their cycle. Furthermore, operators that alter the structure of HMMs can be designed to simple structures. HS algorithm with parameter-setting free technique is proper for optimizing the parameters of HMM. HS algorithm is flexible so as to allow the elimination of requiring tedious parameter assigning efforts. In this paper, a sequential data analysis simulation is illustrated, and the optimized-HMMs are evaluated. The optimized HMM was capable of classifying a sequential data set for testing compared with the normal HMM.
IT 산업이 발달하고, 정보의 양이 넘쳐날수록, 사람들은 획일화되어 제공되는 정보보다는, 스스로 다양한 경로를 통해 정보를 찾아내며, 이를 가공하여 판단하고 반응한다. 그러므로 정보 제공자들은 이러한 개인들의 성향을 만족시키기 위해 서는 획일화된 정보보다는 소비자들이 스스로 판단할 수 있도록 다양한 정보를 제공해 주어야만 할 것이다 이를 위하여 비용의 비교를 통해 경로를 선택하는 기존 알고리즘과 달리 최저비용과의 차이를 통한 알고리즘을 제안한다. 이를 위해 본 연구는 기존의 노드 기반 탐색법에 비해 네트워크 구조의 변화 없이 효율적으로 환승이나 회전제약을 표현할 수 있는 링크 기반 탐색법을 기반으로 운전자들의 다양한 needs를 최대한 반영할 수 있는 즉 유연한 탐색 알고리즘의 개발을 목표로 한다. 이러한 목표를 위해, 기존의 최적 경로와 다경로 탐색 알고리즘을 대상으로 이론적 배경을 고찰하고, 다목적 정보제공을 위한 다경로 탐색기법을 위한 통행원리를 개념화한 후, 이를 알고리즘에 적용하는 방안을 제안하며, 가상의 네트워크에 적용하여 알고리즘 수행과정을 보여주고자 한다
본 논문에서는 유연제조시스템(FMS)에서 다단계스케줄링 문제를 효율적으로 해결하기 위한 적응형 혼합유전 알고리즘(ahGA) 접근법을 제안한다. 제안된 ahGA는 FMS의 해를 개선시키기 위하여 이웃탐색기법을 사용하며, 유전탐색과정에서의 수행도를 향상시키기 위해 유전알고리즘(GA)의 파라메터들을 조정하기 위한 적응형 구조를 사용한다. 수치실험에서는 제안된 ahGA와 기존의 알고리즘들 간의 수행도를 비교하기 위하여 두가지형태의 다단계스케줄링문제를 제시한다. 실험결과는 제안된 ahGA가 기존의 알고리즘들 보나 더 뛰어난 수행도를 보여주고 있다.
A flexible assembly system (FAS) is a production system that assembles various parts with many constraints and manufacturing flexibilities. This paper presents a new method for efficiently solving the integrated process planning and scheduling in FAS. The two problems of FAS process planning and scheduling are tightly related with each other. However, in almost all the existing researches on FAS, the two problems have been considered separately. In this research, an endosymbiotic evolutionary algorithm is adopted as methodology in order to solve the two problems simultaneously. This paper shows how to apply an endosymbiotic evolutionary algorithm to solving the integrated problem. Some evolutionary schemes are used in the algorithm to promote population diversity and search efficiency. The experimental results are reported.
Active distribution system (ADS) considering distributed generation (DG) and electric vehicle (EV) is an effective way to cut carbon emission and improve system benefits. ADS is an evolving, complex and uncertain system, thus comprehensive model and effective optimization algorithms are needed. Battery swapping station (BSS) for EV service is an essential type of flexible load (FL). This paper establishes ADS planning model considering BSS firstly for the minimization of total cost including feeder investment, operation and maintenance, net loss and carbon tax. Meanwhile, immune binary firefly algorithm (IBFA) is proposed to optimize ADS planning. Firefly algorithm (FA) is a novel intelligent algorithm with simple structure and good convergence. By involving biological immune system into FA, IBFA adjusts antibody population scale to increase diversity and global search capability. To validate proposed algorithm, IBFA is compared with particle swarm optimization (PSO) algorithm on IEEE 39-bus system. The results prove that IBFA performs better than PSO in global search and convergence in ADS planning.
This paper presents a scheduling method that uses Petri net modeling and heuristic search to handle the tool setup. In manufacturing systems, a tool is attached to a particular machine to process a particular operation. The activity to attach a tool to a particular machine and detach the tool from the machine requires time. The processing time of operations varies according to the attached tool and the machine used. The method proposed in this paper uses Petri net to model these characteristics and applies a search algorithm to the reachability graph of the Petri net model to generate an optimal or near-optimal schedule. New heuristic functions are developed for efficient search. The experimental results that show the effectiveness of the proposed method are presented.
KSII Transactions on Internet and Information Systems (TIIS)
/
제9권10호
/
pp.3789-3809
/
2015
In this paper, we deal with the problem of M2M gateways' network selection for different types of M2M traffic in heterogeneous wireless networks. Based on the difference in traffic's quality of service (QoS) requirements, the M2M traffic produced by various applications is mainly classified as two categories: flexible traffic and rigid traffic. Then, game theory is adopted to solve the problem of network-channel selection with the coexistence of flexible and rigid traffic, named as flexible network access (FNA). We prove the formulated discrete game is a potential game. The existence and feasibility of the Nash equilibrium (NE) of the proposed game are also analyzed. Then, an iterative algorithm based on optimal reaction criterion and a distributed algorithm with limited feedback based on learning automata are presented to obtain the NE of the proposed game. In simulations, the proposed iterative algorithm can achieve a near optimal sum utility of whole network with low complexity compared to the exhaustive search. In addition, the simulation results show that our proposed algorithms outperform existing methods in terms of sum utility and load balance.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.