• Title/Summary/Keyword: flexible motion control

Search Result 203, Processing Time 0.038 seconds

Robust Position Control of a Single-Link Flexible Manipulator Using Sliding Mode and Piezofilm Actuator (슬라이딩모드와 압전필름 작동기를 이용한 단일링크 유연 머니퓰레이터의 강건위치제어)

  • 최승복
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.6
    • /
    • pp.1371-1381
    • /
    • 1995
  • A novel hybrid control scheme to actively control the endpoint position of a very flexible single-link manipulator is proposed. The control scheme consists of a motor mounted at the beam hub and a piezofilm actuator bonded to the surface of the flexible link. The control torque of the motor to produce a desired motion is firstly determined by employing the sliding mode control theory on the equation of motion of the rigid link having the same mass as that of the proposed flexible link. The torque is then applied to the flexible manipulator in order to activate the commanded motion. During the motion, undesirable oscillation is actively suppressed by applying a feedback control voltage to the piezofilm actuator. Consequently, the imposed desired position is accomplished. In order to demonstrate high control performances accrued from the proposed method, computer simulations are undertaken by treating both regulating and tracking control problems.

Position control fo a flexible gantry robot arm using smart actuators (스마트 작동기를 이용한 갠트리형 유연로봇팔의 위치제어)

  • 한상수;최승복
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1800-1803
    • /
    • 1997
  • This paper presents new feedback actuators to achieve an accurate position control of a flexible gnatry robot arm. the translational motion in the plane is generated by two d.c.motors and controlled by emplying elecor-rheological(ER) clutch acutators. The generated motion can be continuously controlled by controlling the intensity of lectric field imposed to the ER fluid domain which tunes the transmitted torque of the ER clutch. n the other hand, during control action of the translational motion a flexible arm attached to the moving mass produces undesirable oscillatins due to its inherent flexibility. The oscillations are actively suppressed by applying feedback voltages to piezoceramic acutators bonded on the surface of the flexible arm. The control electric fields to be applied to the ER clutch and the control voltage for the piezoceramic actuator are determined via the loop shaping esign procedures(LSDP) in the H.inf. control technique. Comsequently, an accuate positiion control at the end-point of the flexible am is achieved during planar motion.

  • PDF

Robust motion control of a flexible micro-actuator using $H_{\infty}$ control method

  • Okugawa, Masayuki;Sasaki, Minoru;Fujisawa, Fumio
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.397-400
    • /
    • 1996
  • In this paper, robust motion control of a flexible micro-actuator is presented. The actuator is made of a bimorph piezoelectric high-polymer material (PVDF). No mathematical model system can exactly model a physical system such a flexible micro-actuator. For this reason we must be aware of how modeling errors might adversely affect the performance of a control system for such a model. The H method addresses a wide range of the control problems, combining the frequency and time domain approaches. The design is an optimal one in the sense of minimization of the maximum of the closed-loop transfer function. It includes colored measurement and process noise. It also addresses the issues of robustness due to model uncertainties, and is applicable to the, flexible micro-actuator control problem. Therefore, we adopt the H control problem to the robust motion control of the flexible micro-actuator. Theoretical and experimental results demonstrate the satisfactory performance and the effectiveness of the designed controller. the effectiveness of the designed controller.

  • PDF

Compliant control of a flexible manipulator featuring piezoactuator (압전작동기를 갖는 유연매니퓰레이터의 컴플라이언트 제어)

  • 김형규;최승복
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.722-725
    • /
    • 1996
  • This paper presents a new control strategy for the position and force control of a flexible manipulator. The governing equation of motion of a two-link flexible manipulator which features a piezoceramic actuator is derived via Hamilton's principle. The control torque of the motor to command desired position and force is determined by a sliding mode controller. This controller is formulated to take account of parameter uncertainties and external disturbances. During the commanded motion, undesirable oscillation is actively suppressed by applying a feedback control voltage to the piezoceramic actuator. Consequently, an accurate compliant motion control of the flexible manipulator is achieved. Computer simulations are undertaken in order to demonstrate the effectiveness of the proposed control methodology.

  • PDF

Vibration Control of a Very Flexible Robot Arm-via Piezoactuators (압전 작동기를 이용한 매우 유연한 로봇 팔의 진동 제어)

  • 신호철;최승복
    • Journal of KSNVE
    • /
    • v.6 no.2
    • /
    • pp.187-196
    • /
    • 1996
  • A new control strategy to actively control the vibration of a very flexible single link manipulator is proposed and experimentally realized. The control scheme consists of two actuators; a motor mounted at the beam hub and a piezoceramic bonded to the surface of the flexible link. The control torque of the motor to produce a desired angular motion is firstly determined by employing a sliding mode control theory on the equivalent rigid dynamics. The torque is then applied to the flexible manipulator in order to activate the commanded motion. During the motion, underirable oscillation is actively suppressed by applying a feedback control voltage to the piezoceramic actuator. Consequently, the desired tip position is favorably accomplished without vibration. Measured control responses are presented in order to demonstrate the efficiency of the proposed control methodology.

  • PDF

Analysis and Control of the Flexible Multibody System Using MATLAB (MATLAB을 이용한 유연 다물체 시스템의 해석 및 제어)

  • Jung, Sung-Pil;Park, Tae-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.5
    • /
    • pp.437-443
    • /
    • 2008
  • In this paper, analysis and control of the flexible multibody system using MATLAB is presented. The equations of motion of a flexible body are derived in terms of the modal coordinate. The rigid-flexible multibody dynamic solver is developed. Finite element information required to analyze motion of flexible bodies is imported from ANSYS. The modified finite element data, such as modal mass matrix, modal stiffness matrix and constraint mode shapes, is calculated in the solver. Since the solver is developed using MATLAB, it is very easy to connect with SIMULINK which is widely used to control motion of the multibody system. Several simulations are implemented to verify the developed solver. A control example is carried out and the usefulness of the developed solver is demonstrated.

Design of Flexible Die Punch and Control System for Three-dimensional Curved Forming Surface (3차원 성형곡면 구현을 위한 가변금형의 펀치 및 제어시스템 설계)

  • Seo, Y.H.;Heo, S.C.;Ku, T.W.;Kim, J.;Kang, B.S.
    • Transactions of Materials Processing
    • /
    • v.20 no.3
    • /
    • pp.206-213
    • /
    • 2011
  • A flexible die, which is composed of a number of punches with adjusted heights to form a three-dimensional curved surface, is a crucial part of a flexible forming technology. In this study, the punch and control system of the flexible die were designed. The flexible die is divided into three modules, namely, punch, control and joint, and the corresponding modules were developed. The punch module materializes a three-dimensional forming surface by the control module, which is composed of an AC servo motor set and a linear guide. The joint module is necessary for the sequential motion between the servo motor set and the punch module. A sequential motion algorithm for the AC servo motor set, that uses the data of the punch relative heights, was also proposed. Finally, a flexible stretch forming test was carried out using the presently designed flexible die.

Dynamic modeling and system identification for a MMAM controlled flexible manipulator

  • Nam, Yoonsu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.592-598
    • /
    • 1992
  • For a high bandwidth, accurate end of arm motion control with good disturbance rejection, the, Momentum Management Approach to Motion control (MMAM) is proposed. The MMAM is a kind of position control technique that uses inertial forces, applied at or near the end of arm to achieve, high bandwidth and accuracy in movement and in the face of force disturbances. To prove the concept of MMAM, the, end point, control of a flexible manipulator is considered. For this purpose, a flexible beam is mounted on the x-y table, and the MMAM actuator is attached on the top of the flexible beam. A mathematical model is developed for the flexible, beam being controlled by the, MMAM actuator and slide base DC motor. A system identification method is applied to estimate some system parameters in the, model which can not be determined because of the complexity of the mechanism. For the end point, control of the. flexible beam, the, optimal linear output feedback control is introduced.

  • PDF

Formulation of the equation of motion for flexible robotics arms by using the finite element and modal reduction method (유한요소및 모달감소법을 이용한 유연로보트팔 운동방정식의 정식화)

  • 김창부;유영선
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.533-538
    • /
    • 1991
  • In the design and operation of robot arms with flexible links, the equations of motion are required to exactly model the interaction between rigid motion and elastic motion and to be formulated efficiently. Thus, the flexible link is represented on the basis of the D-H rigid link representation to measure the elastic deformation. The equations of motion of robot arms, which are configured by the generalized coordinates of elastic and rigid degrees of freedom, are formulated by using F.E.M. to model complex shaped links systematically and by eliminating elastic mode of higher order that does not largely affect motion to reduce the number of elastic degree of freedom. Finally, presented is the result of simulation to flexible robotic arm whose joints are controlled by direct or PD control,

  • PDF

On the Estimation of the Center of Mass of an Autonomous Bipedal Robot (이족보행 로봇의 무게중심 실시간 추정에 관한 연구)

  • Kwon, Sang-Joo;Oh, Yong-Hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.9
    • /
    • pp.886-892
    • /
    • 2008
  • In this paper, a closed-loop observer to extract the center of mass (CoM) of a bipedal robot is suggested. Comparing with the simple conversion method of just using joint angle measurements, it enables to get more reliable estimates by fusing both joint angle measurements and F/T sensor outputs at ankle joints. First, a nonlinear-type observer is constructed to estimate the flexible rotational motion of the biped in the extended Kalman filter framework. It adopts the flexible inverted pendulum model which is appropriate to address the flexible motion of bipeds, specifically in the single support phase. The predicted estimates of CoM in terms of the flexible motion observer are combined with measurements (that is, output of the CoM conversion equation with joint angles). Then, we have final CoM estimates depending on the weighting values which penalize the flexible motion model and the CoM conversion equation. Simulation results show the effectiveness of the proposed algorithm.