• 제목/요약/키워드: flexible memory

검색결과 139건 처리시간 0.031초

초소형 작동형 내시경용 Bending 액츄에이터의 제작 (Fabrication of Bending Actuator for Micro Active Catheter)

  • 이광호;이승기
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 추계학술대회 논문집 학회본부
    • /
    • pp.615-617
    • /
    • 1997
  • This paper reports experimental results on the fabrication and analysis of millimeter-sized bending actuators for active catheter by use of the shape memory alloy spring and the flexible beam. The major components of micro actuator are shape memory alloy spring, stainless steel strip and two acryl links. The micro actuator with the diameter of 2.0 mm and the length of 25 mm has been fabricated and characterized for the possible application to the micro active catheters. The measured maximum angle is $60^{\circ}$ and the response time is 5 sec.

  • PDF

Modified sigmoid based model and experimental analysis of shape memory alloy spring as variable stiffness actuator

  • Sul, Bhagoji B.;Dhanalakshmi, K.
    • Smart Structures and Systems
    • /
    • 제24권3호
    • /
    • pp.361-377
    • /
    • 2019
  • The stiffness of shape memory alloy (SMA) spring while in actuation is represented by an empirical model that is derived from the logistic differential equation. This model correlates the stiffness to the alloy temperature and the functionality of SMA spring as active variable stiffness actuator (VSA) is analyzed based on factors that are the input conditions (activation current, duty cycle and excitation frequency) and operating conditions (pre-stress and mechanical connection). The model parameters are estimated by adopting the nonlinear least square method, henceforth, the model is validated experimentally. The average correlation factor of 0.95 between the model response and experimental results validates the proposed model. In furtherance, the justification is augmented from the comparison with existing stiffness models (logistic curve model and polynomial model). The important distinction from several observations regarding the comparison of the model prediction with the experimental states that it is more superior, flexible and adaptable than the existing. The nature of stiffness variation in the SMA spring is assessed also from the Dynamic Mechanical Thermal Analysis (DMTA), which as well proves the proposal. This model advances the ability to use SMA integrated mechanism for enhanced variable stiffness actuation. The investigation proves that the stiffness of SMA spring may be altered under controlled conditions.

Electrical Properties of Metal-Oxide Quantum dot Hybrid Resistance Memory after 0.2-MeV-electron Beam Irradiation

  • Lee, Dong Uk;Kim, Dongwook;Kim, Eun Kyu;Pak, Hyung Dal;Lee, Byung Cheol
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.311-311
    • /
    • 2013
  • The resistance switching memory devices have several advantages to take breakthrough for the limitation of operation speed, retention, and device scale. Especially, the metal-oxide materials such as ZnO are able to fabricate on the flexible and visible transparent plastic substrate. Also, the quantum dots (QDs) embedded in dielectric layer could be improve the ratio between the low and the high resistance becauseof their Coulomb blockade, carrier trap and induced filament path formation. In this study, we irradiated 0.2-MeV-electron beam on the ZnO/QDs/ZnO structure to control the defect and oxygen vacancy of ZnO layer. The metal-oxide QDs embedded in ZnO layer on Pt/glass substrate were fabricated for a memory device and evaluated electrical properties after 0.2-MeV-electron beam irradiations. To formation bottom electrode, the Pt layer (200 nm) was deposited on the glass substrate by direct current sputter. The ZnO layer (100 nm) was deposited by ultra-high vacuum radio frequency sputter at base pressure $1{\times}10^{-10}$ Torr. And then, the metal-oxide QDs on the ZnO layer were created by thermal annealing. Finally, the ZnO layer (100 nm) also was deposited by ultra-high vacuum sputter. Before the formation top electrode, 0.2 MeV liner accelerated electron beams with flux of $1{\times}10^{13}$ and $10^{14}$ electrons/$cm^2$ were irradiated. We will discuss the electrical properties and the physical relationships among the irradiation condition, the dislocation density and mechanism of resistive switching in the hybrid memory device.

  • PDF

직조 형태의 지능형 연성 복합재료를 이용한 쉘 구동기의 제작 (Fabrication of Shell Actuator using Woven Type Smart Soft Composite)

  • 한민우;송성혁;추원식;이경태;이재원;안성훈
    • 한국정밀공학회지
    • /
    • 제30권1호
    • /
    • pp.39-46
    • /
    • 2013
  • Smart material such as SMA (Shape Memory Alloy) has been studied in various ways because it can perform continuous, flexible, and complex actuation in simple structure. Smart soft composite (SSC) was developed to achieve large deformation of smart material. In this paper, a shell actuator using woven type SSC was developed to enhance stiffness of the structure while keeping its deformation capacity. The fabricated actuator consisted of a flexible polymer and woven structure which contains SMA wires and glass fibers. The actuator showed various actuation motions by controlling a pattern of applied electricity because the SMA wires are embedded in the structure as fibers. To verify the actuation ability, we measured its maximum end-edge bending angle, twisting angle, and actuating force, which were $103^{\circ}$, $10^{\circ}$, and 0.15 N, respectively.

가변 형태의 미래형 단말기를 위한 의도인식 통신시스템 (Intention-awareness Communication System for Future Mobile Terminal with Flexible Shape Change)

  • 조면균;윤달환;최효선
    • 한국산학기술학회논문지
    • /
    • 제13권6호
    • /
    • pp.2720-2728
    • /
    • 2012
  • 최근 유연한 디스플레이, 고용량 메모리 및 집적기술의 발전으로 가변형태의 미래형 단말기가 개발되고 있다. 이때 디스플레이의 크기 및 안테나 성상의 변화는 사용자의 QoS 및 통신환경의 변화와 관계가 깊다. 특히 사용자의 의도는 단말기의 모양변화 및 안테나 개수의 증감으로 표현되는데 기지국이 지능적으로 의도를 파악하여 적응적으로 다중안테나 기법을 변경하여 적용함으로써 단말기 사용자의 QoS를 효과적으로 만족시킬 수 있다. 그러므로 본 논문에서는 미래형 단말기의 활용시나리오를 분석하여 거기에 맞는 적응적인 MIMO기법을 사용함으로써 채널용량을 최대화 시키는 동시에 사용자의 QoS를 만족시킬 수 있는 의도 인식 통신시스템을 제안한다.

Boosting up the photoconductivity and relaxation time using a double layered indium-zinc-oxide/indium-gallium-zinc-oxide active layer for optical memory devices

  • Lee, Minkyung;Jaisutti, Rawat;Kim, Yong-Hoon
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.278-278
    • /
    • 2016
  • Solution-processed metal-oxide semiconductors have been considered as the next generation semiconducting materials for transparent and flexible electronics due to their high electrical performance. Moreover, since the oxide semiconductors show high sensitivity to light illumination and possess persistent photoconductivity (PPC), these properties can be utilized in realizing optical memory devices, which can transport information much faster than the electrons. In previous works, metal-oxide semiconductors are utilized as a memory device by using the light (i.e. illumination does the "writing", no-gate bias recovery the "reading" operations) [1]. The key issues for realizing the optical memory devices is to have high photoconductivity and a long life time of free electrons in the oxide semiconductors. However, mono-layered indium-zinc-oxide (IZO) and mono-layered indium-gallium-zinc-oxide (IGZO) have limited photoconductivity and relaxation time of 570 nA, 122 sec, 190 nA and 53 sec, respectively. Here, we boosted up the photoconductivity and relaxation time using a double-layered IZO/IGZO active layer structure. Solution-processed IZO (top) and IGZO (bottom) layers are prepared on a Si/SiO2 wafer and we utilized the conventional thermal annealing method. To investigate the photoconductivity and relaxation time, we exposed 9 mW/cm2 intensity light for 30 sec and the decaying behaviors were evaluated. It was found that the double-layered IZO/IGZO showed high photoconductivity and relaxation time of 28 uA and 1048 sec.

  • PDF

정진폭 다중 부호 이진 직교 변복조기의 FPGA 설계 및 SoC 구현 (FPGA Design and SoC Implementation of Constant-Amplitude Multicode Bi-Orthogonal Modulation)

  • 홍대기;김용성;김선희;조진웅;강성진
    • 한국통신학회논문지
    • /
    • 제32권11C호
    • /
    • pp.1102-1110
    • /
    • 2007
  • 본 논문에서는 기존의 정진폭 다중 부호 이진 직교 (CAMB: Constant-Amplitude Multi-code Biorthogonal) 변조 이론을 적용한 변복조기를 프로그래밍 가능한 게이트 배열 (FPGA: Field-Programmable Gate Array)을 사용하여 설계하고 시스템 온 칩 (SoC: System on Chip)으로 구현하였다. 이 변복조기는 FPGA을 이용하여 타겟팅 한 후 보드실험을 통해 설계에 대한 충분한 검증을 거쳐 주문형 반도체 (ASIC: Application Specific Integrated Circuit) 칩으로 제작되었다. 이러한 12Mbps급 모뎀의 SoC를 위하여 ARM (Advanced RISC Machine)7TDMI를 사용하였으며 64K바이트 정적 램 (SRAM: Static Random Access Memory)을 내장하였다. 16-비트 PCMCIA (Personal Computer Memory Card International Association), USB (Universal Serial Bus) 1.1, 16C550 Compatible UART (Universal Asynchronous Receiver/Transmitter) 등 다양한 통신 인터페이스를 지원할 뿐 아니라 ADC (Analog to Digital Converter)/DAC (Digital to Analog Converter)를 포함하고 있어 실제 현장에서 쉽게 활용될 수 있을 것으로 기대된다.

가변형 파이프라인방식 메모리를 내장한 공유버퍼 ATM 스위치의 구현 (Implementation of a Shared Buffer ATM Switch Embedded Scalable Pipelined Buffer Memory)

  • 정갑중
    • 한국정보통신학회논문지
    • /
    • 제6권5호
    • /
    • pp.703-717
    • /
    • 2002
  • 본 논문은 가변형 공유 버퍼 ATM 스위치의 구조 및 VLSI 구현에 관한 연구이다. 본 논문에서 설계한 단일 칩 공유 버퍼 ATM 스위치는 4ns접근속도의 가변형 파이프라인 방식 공유 버퍼를 내장하고 기존의 공유 버퍼 ATM 스위치들이 가지는 메모리 사이클 시간 제한을 해결한다. 내장 버퍼의 가변성을 이용하여 유연한 스위칭 성능을 지원하고 버퍼 메모리 제어와 주소 큐 제어의 독립성을 이용하여 포트 사이즈의 가변성을 제공한다. 제안된 ATM 스위치는 스위치 사이즈와 버퍼 사이즈의 가변성을 이용하여 복잡한 회로의 재설계 없이 용량 및 성능을 재구성할 수 있다. 0.6um CMOS 기술의 설계된 칩은 동작 주파수 800MHz, 640Mbps/port, 4 ${\times}$ 4 Switch Size를 지원한다.

반도체 소자 국제 표준화 최근 동향 연구 (Recent Trend of International Standardization of Semiconductor Devices)

  • 좌성훈;한태수;김원종
    • 마이크로전자및패키징학회지
    • /
    • 제23권1호
    • /
    • pp.1-10
    • /
    • 2016
  • Nowadays, the importance of role of the international standardization keeps increasing substantially. We have already known that international standards have a huge impact on many companies, industries and nations. So far, it has been thought that standardizations are needed after the new products come into the market and are mass-produced in order to encourage the use of the products, systems and services. Standardization will make the products more safe, efficient, and environmentally friendly for the users. However, in these days, a paradigm of the standardization has been changed. International standard becomes a tool for dominating global market and is the most important ingredients of the competitiveness and economic progress of the nation and enterprises. Many countries like Japan, Germany and U.S. use the standardization as an effective method to dominate the market and monopolized the new technologies. Therefore, worldwide competition for the standardization of the new technology become fierce. Korea is leading the technology in semiconductor field. However, activities of international standardization are not sufficient. In order to boost the standardization activities in Korea from industry, academia, and research institute, this paper briefly introduce the international standard organization and some critical issues for next-generation semiconductor memory such as flexible semiconductor, automobile semiconductor and wearable devices.