• Title/Summary/Keyword: flexible material

Search Result 1,047, Processing Time 0.025 seconds

Transfer Methods of Inorganic Thin Film Materials for Heterogeneously- Integration Flexible Semiconductor System (이종 집적 유연 반도체 시스템 구현을 위한 무기물 박막소재의 전사 방법)

  • Gyeong Hyeon Ju;Jeong Hyeon Kim;Sang Yoon Park;Kang Hyeon Kim;Han Eol Lee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.3
    • /
    • pp.241-252
    • /
    • 2024
  • With the recent development of emerging technologies, information acquisition and delivery between users has been actively conducted, and inorganic thin film transfer technology that effectively transfers various materials and devices is being studied to develop flexible electronic devices accordingly. This is aimed at innovative structural changes and functional improvement of electronic devices in the era of the Internet of Things (IoT). In particular, advanced technologies such as microLEDs are used to realize high-resolution flexible displays, and the possibility of heterogeneous integrated technologies can be presented by precisely transferring materials to substrates through various transfer process. This paper introduced physical, chemical, and self-assembly transfer methods based on inorganic thin film materials to implement heterogeneous integrated flexible semiconductor systems and introduces the results of application studies of semiconductor devices obtained through different transfer technologies. These studies are expected to bring about innovative changes in the field of smart devices, medical technology, and user interfaces in the future.

Development of a flexible composite based on vulcanized silicon casting with bismuth oxide and characterization of its radiation shielding effectiveness in diagnostic X-ray energy range and medium gamma-ray energies

  • Ibrahim Demirel;Haluk Yucel
    • Nuclear Engineering and Technology
    • /
    • v.56 no.7
    • /
    • pp.2570-2575
    • /
    • 2024
  • The study aims to develop a novel, lead-free, flexible and lightweight composite shielding material against ionizing radiation. For this, it was used bismuth oxide (Bi2O3) in RTV-2 silicon matrix. The shielding tests were carried out in both diagnostic X-ray energies and intermediate gamma-ray energy range of up to 662 keV to determine the radiation attenuation properties of this material in terms of attenuation ratio, half value layer, tenth value layer, mean free path and lead equivalency of samples in weight of 30%, 40%, 50% in Bi2O3. In the diagnostic X-ray energy range, half value layer, tenth value layer and lead equivalency (in mm Pb) of the produced samples were measured at 80 and 100 kVp narrow beam conditions according to the requirements of EN IEC 61331-1 standard. The results show that lead equivalent values of the produced novel sheets was measured to be 0.16 mm Pb, corresponding to a 6 mm thickness of the flexible sample when it contains 30% wt. Bi2O3 in RTV matrix. The experimental findings for durability and flexibility also indicated that this new RTV-based flexible, lead -free shielding composite can be used safely for especially for manufacturing aprons, garments and thyroid guards used in mammography, radiology, nuclear medicine and dental applications in practice.

Manufacturing Experiments using FDM 3D-printed Flexible Resistance Sensors with Heterogeneous Polymer Material Annealing (이종 폴리머재료 어닐링을 이용한 유연저항센서 FDM 3D프린팅 제작실험)

  • Lee, Sun Kon;Oh, Young Chan;Kim, Joo Hyung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.1
    • /
    • pp.81-88
    • /
    • 2020
  • In this paper, the performances of the electrical characteristics of the Fused Deposition Modeling (FDM) 3D-printed flexible resistance sensor was evaluated. The FDM 3D printing flexible resistive sensor is composed of flexible-material thermoplastic polyurethane and a conductive PLA (carbon black conductive polylactic acid) polymer. While 3D printing, polymer filaments heat up quickly before being extruded and cooled down quickly. Polymers have poor thermal conductivity so the heating and cooling causes unevenness, which then results in internal stress on the printed parts due to the rapidity of the heating and cooling. Electrical resistance measurements show that the 3D-printed flexible sensor is unstable due to internal stress, so the 3D-printed flexible sensor resistance curve does not match the increases and decreases in the displacement curve. Therefore, annealing was performed to eliminate the mismatch between electrical resistance and displacement. Annealing eliminates residual stress on the sensor, so the electrical resistance of the sensor increases and decreases in proportion to displacement. Additionally, the resistance is lowered in comparison to before annealing. The results of this study will be very useful for the fabrication of various devices that employ 3D-printed flexible sensor that have multiple degrees of freedom and are not limited by size and shape.

The Combustion Gases Toxicity Evaluation of Plastics Material by Colorimetric Gas Detector Tubes (가스검지관법에 의한 플라스틱재료의 연소가스 독성평가)

  • 박영근;김동일;현성호
    • Fire Science and Engineering
    • /
    • v.16 no.4
    • /
    • pp.77-84
    • /
    • 2002
  • In this paper, we had analyzed comsbustion gases using a GASTEC colorimetric gas detector tube according to the method of NES 713 in order to combustion gases toxicity evaluation for beads polystyrene foam, extruded polystyrene foam, rigid polyurethane foam, flexible polyurethane foam, flexible polyvinyl chloride pipe, vinyl floor cover, polyethyelene foam(flame retardant untreated) and polyethyelene foam (flame retardant treated) of plastics material. As results of gas analyses by using this method, comsbustion gases producted from small specimens of plastics material had reached fatal to man at 30 minutes exposure time that had possesed toxicity index of more than 1. Toxicity indexes of each specimen were estimated range of 4.3∼179.2, flexible polyvinyl chloride showed the hightest toxicity index at 179.2, and beads polystyrene foams showed the lowest toxicity index at 4.3.

The Fabrication and Characteristics of White Emission Using CCM on Flexible Substrate (플렉시블 무기EL 색변환 백색 발광 소자 제작 및 특성평가)

  • Kim, Gi-Ryoung;Ahn, Sung-Il;Kum, Jeong-Hun;Lee, Heung-Ryeol;Yim, Tae-Hong;Lee, Seong-Eui
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.411-412
    • /
    • 2007
  • EL (electro luminescent) is generally studied as a large size plane light emitting device and flexible light source because of it's simple manufacturing process. In this experiment, we manufactured flexible white emitting light source using Ni-foil with blue phosphor and color change materials. With increasing the thickness of color change material, the luminance of white emission is increased and the color coordinate of white color was shifted to pure white of (0.317,0.328) by strong emission of color change materials excited by blue excitation spectra. Also the luminance level was 30% higher in white emitting light device than blue only light source.

  • PDF

The Influence of Encapsulation Layer Incorporated into Flexible Substrates for Bending Stress (Flexible 기판의 Bending Stress에 대한 Encapsulation Layer의 영향)

  • Park, Jun-Baek;Seo, Dae-Shik;Lee, Sang-Keuk;Lee, Joon-Ung;Kim, Yong-Hoon;Moon, Dae-Gyu;Han, Jeong-In
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.473-476
    • /
    • 2003
  • This paper shows necessity of encapsulation layer to maximite flexibility of brittle indium-tin-oxide (ITO) on polymer substrates. And, Young's modulus (E) of encapsulation layer have an significant effect on external bending stress and the coefficient of thermal expansion (CTE) of that have a significant effect on internal thermal stress. To compare magnitude of total mechanical stress including both bending stress and thermal stress, the mechanical stress of triple-layer structure (substrate / ITO / encapsulation layer or substrate / buffer layer / ITO) can be quantified and numerically analyzed through the farthest cracked island position. As a result, it should be noted that multi-layer structures with more elastic encapsulation material have small mechanical stress compared to that of buffer and encapsulation structure of large Young's modulus material when they were externally bent.

  • PDF

Porous fiber filled by liquid crystal for flexible displays and E-paper technology

  • Mashchenko, V.I.;Udra, S.A.;Sorokin, V.V.;Gerasimov, V.I;Belyaev, V.V.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1249-1250
    • /
    • 2004
  • In this paper, we report new technique of preparation of material for flexible displays and E-paper technology. This material represents porous polymeric fiber based on polyacrylonitrile filled by liquid crystal.

  • PDF

All-solid-state electrochromic devices on flexible substrate (Flexible 기판 위의 전고상 전기변색 소자 제작)

  • 나윤채;심희상;조인화;성영은
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.129-129
    • /
    • 2003
  • 전기변색(electrochromism)은 전기화학적 산화, 환원 과정을 통해 가역적인 광학특성의 변화를 갖는 현상을 말하며, 이를 이용한 전기변색소자(electrochromic device)는 전력 소모가 적고 변색효율이 크다는 장점으로 인해 smart window, display, mirror 등에 응용될 수 있다. 전기변색소자는 구조상 투명 기판, 투명 전도체, 환원 착색 물질 (cathodic coloration material), 산화 착색 물질(anodic coloration material), 그리고 투명 이온 전도체로 구성된다. 일반적으로 투명 기판으로는 열적 안정성이 좋은 유리기판을 사용하여 window에 응용할 수 있는 장점이 있는 반면 다양한 형태를 갖는 소자를 제작하기에는 그 한계가 있다.

  • PDF

Handling of Polyethylene Sheet Plate in Press Process (프레스 박판 소재의 취급성)

  • Mok, Hak-Soo;Kim, Gyung-Yun
    • IE interfaces
    • /
    • v.7 no.2
    • /
    • pp.145-155
    • /
    • 1994
  • In this paper, we analyzed weak points of press process with the rolled thin flexible plate. The problems which are caused by the adhesion of blank on the surface of die and the separation of blank from scrap during its transportation after blanking were solved by the redesign of the structure of die and the development of special equipment for material handling. It is our purpose to make better the automation of blanking process and the safety for worker by the improvement of flexible material handling.

  • PDF

EMI (Electromagnetic Interference) Shielding Properties of Barium-Based Ferrite Thin Films Prepared by Spin Spray Method (스핀 스프레이 방식으로 제조된 바륨계 페라이트 박막의 EMI (Electromagnetic Interference) 차폐 특성)

  • Hye Ryeong Oh;Yeon-Ju Park;Woo-Sung Lee;Chan-Sei Yoo;Myong-Jae Yoo;Intae Seo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.2
    • /
    • pp.195-201
    • /
    • 2024
  • The low-temperature deposition of BaNi(2-x)CoxFe16O27 thin films with a Ba hexaferrite structure for electromagnetic shielding was studied. The BaNi(2-x)CoxFe16O27 thin films produced through the spin spray process were suitable for thin film deposition on a flexible substrate because it crystallized well at low temperature below 90℃. The change in shielding characteristics depending on the Co content of the BaNi(2-x)CoxFe16O27 thin film was investigated, and excellent shielding characteristics with S21 of -1 dB were obtained in a wide frequency range of 26~40 GHz when the Co content was 0.4 or more. The purpose of this study is to analyze changes in shielding properties caused by change in Co content in relation to phase changes in BaNi(2-x)CoxFe16O27 and obtain basic data for developing excellent flexible electromagnetic wave shielding materials.