• Title/Summary/Keyword: flexible material

Search Result 1,053, Processing Time 0.033 seconds

H Controller Design of Flexible Space Structure with the Uncertainty of Damping Ratio (감쇠비 불확실성을 고려한 유연구조물의 H 제어기 설계)

  • Chae, Jang-Su;Park, Tae-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.4
    • /
    • pp.602-608
    • /
    • 2002
  • The flexible structure like solar array and antenna in spacecraft shows very sensitive responses to the inner or outer disturbance and noise. And the spacecraft becomes more complex and larger as it has various mission and role. But since the spacecraft need to have the limited mass, the thin and light material should be selected and this necessity induces the decrease d natural frequency and structural stiffness. It reduces the ability of adapting to the disturbance and induces the structural unstability. Certainly, the disturbance does not only make the structural unstability, but also give the bad effect to the precise attitude control. So it is necessary to control the vibration in the space. In this paper, the flexible structure control modeling with piezo sensor and piezo actuator is developed. The model uncertainty of damping ratio is overcome by robust control. The system equation is induced by the finite element method.

Geotechnical problems in flexible pavement structures design

  • Mato G. Uljarevic;Snjezana Z. Milovanovic;Radovan B. Vukomanovic;Dragana D. Zeljic
    • Geomechanics and Engineering
    • /
    • v.32 no.1
    • /
    • pp.35-47
    • /
    • 2023
  • Deformability of road pavements in the form of ruts represent a safety risk for road users. In the procedures for dimensioning the pavement structure, the requirement that such deformations do not occur is imperatively included, which results in the appropriate selection of elements (material, geometry) of the pavement structure. Deformability and functionality, will depend of the correct design of pavement structure during exploitation period. Nevertheless, there are many examples where deformations are observed on the pavement structure, in the form of rutting at parts of the road with relatively short length, realised in the same climatic and the same geoenvironmental conditions. The performed analysis of deformability led to the conclusion that the level of deformation is a function of the speed of traffic. This effect is observed on city roads, but also outside of urban areas at roads with speed limits are significant, due to the traffic management, traffic jams (intersections, etc.). Still, the lower speed cause greater deformations. The authors tried to describe the deformability of flexible pavement structures, from the aspects of geotechnical problems, as a function of driving speed. Outcome of the analysis is a traffic load correction coefficient, in terms of using the existing methods of flexible pavement structures design.

Numerical Study on Effect of Using Elastic Pads in Flexible Forming Process (가변성형 공정에서 탄성 패드의 영향에 관한 수치적 연구)

  • Heo, Seong-Chan;Seo, Young-Ho;Noh, Hak-Gon;Ku, Tae-Wan;Kang, Beom-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.5
    • /
    • pp.549-556
    • /
    • 2010
  • In general, materials that can be used to form elastic pads, such as urethane and rubber, are often used in flexible forming processes by inserting the pads between a blank and flexible die for smoothing the forming surface that is formed by a reconfigurable die. In this study, the effects of the elastic pad on formability in the flexible forming process for sheet metals are investigated by performing numerical simulations. In the simulation, the hyperelastic material model is used, where the urethane elastic pads serve as elastic cushions. Case studies are carried out for elastic materials with different hardness values and thicknesses. The results are used to evaluate formability by comparing the configuration of the deformed blank and its major cross-sectional profiles. It is verified that the elastic pad used in the flexible forming process for sheet materials should be hard and that its thickness should be chosen appropriately.

Fabrication and analysis of flexible and transparent antenna on polyamide substrate for laptop computer (폴리아미드 기판에 제작된 노트북용 플렉서블 투명 전극 안테나의 제작 및 분석)

  • Lee, Changmin;Kim, Ilkwon;Kim, Youngsung;Kim, Yongjin;Jung, Changwon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.7
    • /
    • pp.4457-4462
    • /
    • 2014
  • This paper presents an antenna design that can be applied to flexible transparent conducting film. The antennas shaping PIFA (Planar Inverted F-shpae Antenna) were produced on polyamide substrates, which are flexible. The IZTO/Ag/IZTO multilayer films were used for the antennas and exhibited superior electrical, optical and flexible characteristics. This study compared the transparency and performance of two antennas (IZTO/Ag/IZTO multilayer film, and Ag monolayer film). The operation frequencies were set to 5.18~5.32 GHz of WLAN (802.11a). The performance showed a maximum efficiency and peak gain of 89 % and 5.86 dBi, respectively.

Appropriate Boundary Conditions for Three Dimensional Finite Element Implicit Dynamic Analysis of Flexible Pavement (연성포장의 3차원 유한요소해석을 위한 최적 경계조건 분석)

  • Yoo, Pyeong-Jun;Al-Qadi, Imad L.;Kim, Yeon-Bok
    • International Journal of Highway Engineering
    • /
    • v.10 no.4
    • /
    • pp.213-224
    • /
    • 2008
  • Flexible pavement responses to vehicular loading, such as critical stresses and strains, in each pavement layer, could be predicted by the multilayered elastic analysis. However, multilayered elastic theory suffers from major drawbacks including spatial dimension of a numerical model, material properties considered in the analysis, boundary conditions, and ill-presentation of tire-pavement contact shape and stresses. To overcome these shortcomings, three-dimensional finite element (3D FE) models are developed and numerical analyses are conducted to calculate pavement responses to moving load in this study. This paper introduces a methodology for an effective 3D FE to simulate flexible pavement structure. It also discusses the mesh development and boundary condition analysis. Sensitivity analyses of flexible pavement response to loading are conducted. The infinite boundary conditions and time-dependent history of calculated pavement responses are considered in the analysis. This study found that the outcome of 3D FE implicit dynamic analysis of flexible pavement that utilizes appropriate boundary conditions, continuous moving load, viscoelastic hot-mix asphalt model is comparable to field measurements.

  • PDF

Study on Critical Impact Point for a SB2 Class Flexible Barrier (SB2등급 연성베리어의 충돌지점(CIP)에 대한 연구)

  • Heo, Yeon Hee;Kim, Yong Guk;Ko, Man Gi;Kim, Kee Dong
    • International Journal of Highway Engineering
    • /
    • v.15 no.4
    • /
    • pp.127-133
    • /
    • 2013
  • PURPOSES : The impact performance of flexible barrier system such as structural response, vehicular motion and occupant safety vary depending on the impact point. Thus, to properly evaluate the performance of a flexible barrier system, impact should be made to a point which will lead to the worst possible results. This point is called the Critical Impact Point (CIP). This paper presents the way to determine the CIP for a SB2 class flexible barrier system which is consisted of Thrie-Beam rail and circular hollow tube post of 2m span. METHODS: Barrier VII simulations were made for impact points; Case 1 at a post, Case 2 at 1/3 span downstream from a post, Case 3 at middle of the span, Case 4 at 2/3 span downstream from a post. For the structural performance (deflections), impact simulation of 8000kg-65km/h-15degree was used, and for vehicle motion and occupant safety, simulation of 1300kg-80km/h-20degree impact was made and analysed. RESULTS: Case 1 gave the largest dynamic deflection of 75.72cm and also gave the largest snag value of 44.3cm. Occupant safety and exit angle of the vehicle after the impact were not sensitive to the impact point and were all below the allowable limit. CONCLUSIONS : For the SB2 class flexible barrier system's CIP can be regarded as a post which is sufficiently away from the end of Length of Need in order to avoid the end-effect of the barrier system. It can be more economic in the long run because the normal concrete pavement material is likely to cost more due to higher probability of maintenance and repair and higher social cost due to traffic accident, etc.

Establishment of CTE Measurement Procedure for PPLP at 77 K for HTS Power Cables using Double Extensometers

  • Dedicatoria, Marlon J.;Dizon, John Ryan C.;Shin, Hyung-Seop;Sim, Ki-Duk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.14 no.4
    • /
    • pp.24-27
    • /
    • 2012
  • The measurement of the coefficient of thermal expansion (CTE) of polypropylene laminated paper (PPLP) as electric insulating material is important for its practical superconducting device application. The thermal strain induced to HTS tapes and its insulating material during cooling from room temperature might largely affect the critical current ($I_c$) of HTS tapes. In this study, the thermal contraction of PPLP material was measured during cooling from 300 K to 77 K using double extensometers. Initially, the CTE of a brass tape was measured and it was compared with a reference data. It was found that the measured thermal expansion data of the brass material approaches that of the reference one. Based on the results, it was then confirmed that the measurement technique could be applied to thin and flexible samples. Therefore, the same measurement procedure was applied to PPLP material using double extensometers. As a result, the linear CTE of the PPLP at 77 K has been measured to be ${\sim}15.3{\times}10^{-6}/K$. Also, it was found that the thermal contraction characteristics of PPLP was dominated by polypropylene on the cross direction (higher thermal contraction) while it was dominated by Kraft paper on the machine direction (lower thermal contraction). Overall, this measurement procedure could be adopted for the determination of CTE of flexible materials such as PPLP.

Evaluation of Physical Properties of Material Combination for Fabricating Protection Pads for Women's Army Combat Uniforms (여군 전투복 내 관절 부위 보호 패드 개발을 위한 설계 변인 조합에 따른 물성 평가)

  • Okkyung Lee;Heeran Lee;Soyoung Kim;Yejin Lee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.47 no.2
    • /
    • pp.311-322
    • /
    • 2023
  • In this study, the properties of various material combinations were evaluated and an ideal material for fabricating protection pads for women's army combat uniforms was determined. Eight specimens were used for the evaluation: two types of materials, namely thermoplastic polyurethane for 3D printing, T and ethylene-vinyl acetate, E; two infill densities, namely 10%, 10 and 30%, 30; two types of pad designs, i.e., without holes, A and with holes, B; 2×2×2=8 and control E. The tensile strength, flexural strength, impact absorption, and weight of these specimens were evaluated. Results revealed that E was the most flexible material; however, its tensile strength and impact absorption were very low. Protection pads made from T (T-10A, T-10B, T-30A, and T-30B) had excellent tensile strength and impact absorption; however, they had low performance in ease of movement. Alternatively, protection pad with holes and an infill density of 30% produced using a combination of T and E had a high initial tensile modulus and exhibited excellent impact absorption. Moreover, it was flexible and light, which satisfies the standards and conditions required by protection pads. However, if T-E-10A and T-E-30B exhibited low impact absorption, as required, they can be regarded as appropriate materials for protection pads.

Control of Position of Neutral Line in Flexible Microelectronic System Under Bending Stress (굽힘응력을 받는 유연전자소자에서 중립축 위치의 제어)

  • Seo, Seung-Ho;Lee, Jae-Hak;Song, Jun-Yeob;Lee, Won-Jun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.2
    • /
    • pp.79-84
    • /
    • 2016
  • A flexible electronic device deformed by external force causes the failure of a semiconductor die. Even without failure, the repeated elastic deformation changes carrier mobility in the channel and increases resistivity in the interconnection, which causes malfunction of the integrated circuits. Therefore it is desirable that a semiconductor die be placed on a neutral line where the mechanical stress is zero. In the present study, we investigated the effects of design factors on the position of neutral line by finite element analysis (FEA), and expected the possible failure behavior in a flexible face-down packaging system assuming flip-chip bonding of a silicon die. The thickness and material of the flexible substrate and the thickness of a silicon die were considered as design factors. The thickness of a flexible substrate was the most important factor for controlling the position of the neutral line. A three-dimensional FEA result showed that the von Mises stress higher than yield stress would be applied to copper bumps between a silicon die and a flexible substrate. Finally, we suggested a designing strategy for reducing the stress of a silicon die and copper bumps of a flexible face-down packaging system.

A Basic Study on the Design of the Flexible Keel in the Energy-Storage Prosthetic Foot for the Improvement of the Walking Performance of the Below Knee Amputees (하지 절단환자의 보행 능력 향상을 위한 에너지 저장형 의족의 유연 용골 설계를 위한 기초연구)

  • 장태성;이정주;윤용산;임정옥
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.5
    • /
    • pp.519-530
    • /
    • 1998
  • In this paper, the basic study on the design of the flexible keel of the energy-storage prosthetic foot was performed in order to Improve the walking performance and Increase the activities of the below knee amputees. Based on the analysis of the anthropometric data and the normal gait on two dimensional sagittal plane available In the literature, we presented a model of the basic structure of the flexible keel of the prosthetic foot. The model of the basic structure was composed of the simple beams, and linear rotational spring and damper. Laminated carbon fiber-reinforced composites were selected as the material of the basic structure model of the flexible keel In order to apply the high strength and light weight materials to the basic structure of the flexible keel of the prosthetic foot. The recoverable strain energy In response to the change of beam shape was calculated bur the finite element analysis and it was suggested that the change of beam shape could be the design variable in flexible keel design. The simulation process was systematically designed by using orthogonal array table in order to design the flexible keel structure which could store the more recoverable strain energy. finite element analysis was carried but according to the design of simulations by using the finite element program ABAQUS and the flexible keel structure of the energy-storage prosthetic foot was obtained from the analysis of variance(ANOVA). The dynamic simulation model of the prosthetic walking using the flexible keel structure was made and the dynamic analysis was carried but during one walk cycle. Based on the above results, an effective design process was presented for the development of the prosthetic fool system.

  • PDF