• Title/Summary/Keyword: flexible flat display

Search Result 42, Processing Time 0.026 seconds

Rigid and flexible displays with solution processed dielectric passivation layer integrated with E-Ink imaging films

  • Krishnamoorthy, Ahila;Spear, Richard;Gebrebrhan, Amanuel;Stifanos, Mehari;Yellowaga, Deborah;O'Rourke, Shawn;Loy, Doug;Dailey, Jeff;Marrs, Michael;Ageno, Scott
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.86-88
    • /
    • 2008
  • Organosiloxane based spin on planarizing dielectrics (PTS-E and PTS-R) were developed for application in flat panel displays as a replacement to conformal chemical vapor deposited SiNx. Here we demonstrate the successful use of siloxane-based material as a passivation layer for active matrix $\alpha$-Si thin film transistors (TFT) on both rigid and flexible substrates.

  • PDF

The Investigation of flexible flat display in improving flexibility

  • Huang, Chi-Yuan;Tsao, Keng-Yu;Chou, Ruei-Shu;Chiang, Wen-Yen;Mo, Chi-Neng;Lyu, Robert
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.660-663
    • /
    • 2008
  • In this study, it was mainly focused on the mechanism and reliability performances of PI/PET composites after many times of curving. We developed a new process of spacer for flexible display to improve the maintenance of cell gap. This new process used the laser carving technology, which is widely applied on printing press, to produce the pattern of spacers and shaped both of the alignment film and spacers simultaneously by press of pattern. Assembling the spacer-shaped film and plastic substrates together well and it shows an excellent performance on the maintenance of cell gap and reliability of curving.

  • PDF

Laser Microfabrications for Next-Generation Flat Panel Display (레이저를 이용한 차세대 평판 디스플레이 공정)

  • Kim, Kwang-Ryul
    • Korean Journal of Materials Research
    • /
    • v.17 no.7
    • /
    • pp.352-357
    • /
    • 2007
  • Since a pattern defects "repair" system using a diode pumped solid state laser for Flat Panel Display (FPD) was suggested, a lot of laser systems have been explored and developed for mass-production microfabrication process. A maskless lithography system using 405 nm violet laser and Digital Micromirror Device (DMD) has been developed for PDP and Liquid Crystal Display (LCD) Thin Film Transistor (TFT) photolithography process. In addition, a "Laser Direct Patterning" system for Indium Tin Oxide (ITO) for Plasma Display Panel(PDP) has been evaluated one of the best successful examples for laser application system which is applied for mass-production lines. The "heat" and "solvent" free laser microfabrications process will be widely used because the next-generation flat panel displays, Flexible Display and Organic Light Emitting Diode (OLED) should use plastic substrates and organic materials which are very difficult to process using traditional fabrication methods.

Thin Film Transistor Backplanes on Flexible Foils

  • Colaneri, Nick
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.529-529
    • /
    • 2006
  • Several laboratories worldwide have demonstrated the feasibility of producing amorphous silicon thin film transistor (TFT) arrays at temperatures that are sufficiently low to be compatible with flexible foils such as stainless steel or high temperature polyester. These arrays can be used to fabricate flexible high information content display prototypes using a variety of different display technologies. However, several questions must be addressed before this technology can be used for the economic commercial production of displays. These include process optimization and scale-up to address intrinsic electrical instabilities exhibited by these kinds of transistor device, and the development of appropriate techniques for the handling of flexible substrate materials with large coefficients of thermal expansion. The Flexible Display Center at Arizona State University was established in 2004 as a collaboration among industry, a number of Universities, and US Government research laboratories to focus on these issues. The goal of the FDC is to investigate the manufacturing of flexible TFT technology in order to accelerate the commercialization of flexible displays. This presentation will give a brief outline of the FDC's organization and capabilities, and review the status of efforts to fabricate amorphous silicon TFT arrays on flexible foils using a low temperature process. Together with industrial partners, these arrays are being integrated with cholesteric liquid crystal panels, electrophoretic inks, or organic electroluminescent devices to make flexible display prototypes. In addition to an overview of device stability issues, the presentation will include a discussion of challenges peculiar to the use of flexible substrates. A technique has been developed for temporarily bonding flexible substrates to rigid carrier plates so that they may be processed using conventional flat panel display manufacturing equipment. In addition, custom photolithographic equipment has been developed which permits the dynamic compensation of substrate distortions which accumulate at various process steps.

  • PDF

User Expectation Experience of Flexible Display Interface (플렉서블 디스플레이 인터페이스의 사용자 기대경험)

  • Chung, Seung Eun;Yoon, Young Sun;Lee, Ram;Lim, Yeon Sun;Choi, Ho Jeong;Ryoo, Han Young
    • Design Convergence Study
    • /
    • v.15 no.2
    • /
    • pp.301-317
    • /
    • 2016
  • Flexible display interface is capable of creating new user behaviors based on its characteristics of outstanding surface representation and display transformations such as bending, rolling, and folding. Thus, it is being discussed that the newly emerging flexible display interface can offer a different user experience that the previous flat display couldn't. However, as it is hard to find studies that identify the general attributes of user experience in the area of flexible display research, this study was intended to identify and label experience that users expect in a flexible display interface. For this purpose, this study first investigated literature reviews about user experience in previous digital media interface and flexible display interface and conducted interview research in order to reflect the users' perception, collecting 52 items that represent user experience. In addition, these items were used as measurements to deduct different types of user experience, and 308 interviewees participated in the interview research process. As a result, 10 types of user experience were developed from the results of the survey: functionality, understandability, pleasure, convenience, familiarity, stimulation, adaptability, collectivity, reality, and aesthetic.

Overview of Flexible Display Technology Why, What and When

  • Pinnel, M.Robert
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.227-230
    • /
    • 2005
  • The concepts of flexible displays and plastic electronics have become some of the most talked about new product opportunities for direct view flat panel displays in recent years. The potential advantages are frequently cited, but the achievement of commercially viable products will require many significant technological innovations in new materials and manufacturing technology. This paper will provide a very broad overview of the rationale for developing flexible displays, the market drivers, the applicable display technologies, the major hurdles that must be overcome and the required evolution of new manufacturing technologies that are essential for successful commercialization. This is intended to provide the outline and context for the series of presentations on specific aspects in each of these topics that will be delivered and discussed at the Plastic Electronics Special Session of the 2005 IMID conference.

  • PDF

High Resolution Analysis for Defective Pixels Detection using a Low Resolution Camera

  • Gibour, Veronique;Leroux, Thierry;Bloyet, Daniel
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.856-859
    • /
    • 2002
  • A system for high-resolution analysis of defective elementary cell (R, G or B) on Flat Panel Display (FPD) is described. Based on multiple acquisitions of low-resolution shifted images of the display, our system doesn't require a high-resolution sensor neither tedious alignment of the display, and will remain up to date even facing an important increase of the display dimensions. Our process, highly automated and thus flexible and robust, is expected to perform a full analysis in less than 60s. It is mainly intended for production tests and display classification by manufacturers.

  • PDF

A Study on Properties on High Temperature Sintering Gravure Off-set Ag Paste (고온 소결형 그라비어 오프셋용 Ag 페이스트의 물성 연구)

  • Park, Chang-Won;HwangBo, Hyuck;Cho, Jung-Woo;Nam, Su-Yong
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.29 no.2
    • /
    • pp.71-82
    • /
    • 2011
  • Electronic display markets has been developed. The cathode ray tube of brown form recently celebrated their 100th by first display. Also LCD of flat form recently celebrated their 25th by second display and it has advantage of small volume, lower consumption power. But FPD has problem that is property of brittle and noncarrying by glass substrate. Therefore the arrival of portable electronics devices has put an increasing premium on durable, lightweight and inexpensive display components. It is flexible display by third display. Also electronics field such as printed wiring board, RFID, membrane switch prefer flexible display. The conductive pattern can be used mostly in field of electronic displays and electronics. This manufacture of conductive pattern in present used is screen printing. The the conductive pattern. It has advantages of flexibility, high conductivity, drying in low temperature, good conductivity. screen printing has problem that is low productivity and use not flexible substrate because of high fire temperature. This study was developed novel method to form the conductive pattern. It has advantages of flexibility, high conductivity, drying in low temperature, good conductivity.

Effects of Large Display Curvature on Postural Control During Car Racing Computer Game Play (자동차 경주 컴퓨터 게임 시 대형 디스플레이 곡률이 자세 제어에 미치는 영향)

  • Yi, Jihhyeon;Park, Sungryul;Choi, Donghee;Kyung, Gyouhyung
    • Journal of the HCI Society of Korea
    • /
    • v.10 no.2
    • /
    • pp.13-19
    • /
    • 2015
  • Display technology has recently made enormous progress. In particular, display companies are competing each other to develop flexible display. Curved display, as a precursor of flexible display, are now used for smart phones and TVs. Curved monitors have been just introduced in the market, and are used for office work or entertainment. The aim of the current study was to investigate whether the curvature of a 42" multi-monitor affects postural control when it is used for entertainment purpose. The current study used two curvature levels (flat and 600mm). Ten college students [mean(SD) age = 20.9 (1.5)] with at least 20/25 visual acuity, and without color blindness and musculoskeletal disorders participated in this study. In a typical VDT environment, each participant played a car racing video game using a steering wheel and pedals for 30 minutes at each curvature level. During the video game, a pressure mat on the seat pan measured the participant's COP (Center of Pressure), and from which four measures (Mean Velocity, Median Power Frequency, Root-Mean-Square Distance, and 95% Confidence Ellipse Area) were derived. A larger AP (Anterior-Posterior) RMS distance was observed in the flat condition, indicating more forward-backward upper body movements. It can be partly due to more variability in visual distance across display, and hence longer ocular accommodation time in the case of the flat display. In addition, a different level of presence or attention between two curvature conditions can lead to such a difference. Any potential effect of such a behavioral change by display curvature on musculoskeletal disorders should be further investigated.

RC Oscillator Based on Organic Thin Film Transistor

  • Kim, Seung-Kyum;Kim, Sang-Woo;Moon, Byeong-Cheon;Choi, Woon-Seop;Bae, Byung-Seong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1336-1339
    • /
    • 2007
  • Since organic thin film transistor (OTFT) provides simple and low cost processes, its application to the OTFT display has been studied. We developed an RC oscillator using organic thin film transistor and inverters with bootstrapping transistors. Device parameters were optimized by the simulation and OTFT RC oscillators were fabricated. The oscillator frequency and its dependence on resistance and bias voltage were studied. The organic TFT is adequate for low cost and simple process integrated circuits. The frequency of oscillation was simulated and measured. It is acceptable for low-cost microelectronic device and flat panel displays.

  • PDF